Chronic stress induces pulmonary epithelial cells to produce acetylcholine that remodels lung pre-metastatic niche of breast cancer by enhancing NETosis.

J Exp Clin Cancer Res

Department of Breast Surgery, Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, P.R. China.

Published: September 2023

Background: Chronic stress promotes most hallmarks of cancer through impacting the malignant tissues, their microenvironment, immunity, lymphatic flow, etc. Existing studies mainly focused on the roles of stress-induced activation of systemic sympathetic nervous system and other stress-induced hormones, the organ specificity of chronic stress in shaping the pre-metastatic niche remains largely unknown. This study investigated the role of chronic stress in remodeling lung pre-metastatic niche of breast cancer.

Methods: Breast cancer mouse models with chronic stress were constructed by restraint or unpredictable stress. Expressions of tyrosine hydroxylase, vesicular acetylcholine transporter (VAChT), EpCAM and NETosis were examined by immunofluorescence and confocal microscopy. mRNA and protein levels of choline acetyltransferase (ChAT), VAChT, and peptidylarginine deiminase 4 were detected by qRT-PCR and Western blotting, respectively. Immune cell subsets were analyzed by flow cytometry. Acetylcholine (ACh) and chemokines were detected by ELISA and multi chemokine array, respectively. ChAT in lung tissues from patients was examined by immunohistochemistry.

Results: Breast cancer-bearing mice suffered chronic stress metastasized earlier and showed more severe lung metastasis than did mice in control group. VAChT, ChAT and ChAT epithelial cells were increased significantly in lung of model mice undergone chronic stress. ACh and chemokines especially CXCL2 in lung culture supernatants from model mice with chronic stress were profoundly increased. Chronic stress remodeled lung immune cell subsets with striking increase of neutrophils, enhanced NETosis in lung and promoted NETotic neutrophils to capture cancer cells. ACh treatment resulted in enhanced NETosis of neutrophils. The expression of ChAT in lung tissues from breast cancer patients with lung metastasis was significantly higher than that in patients with non-tumor pulmonary diseases.

Conclusions: Chronic stress promotes production of CXCL2 that recruits neutrophils into lung, and induces pulmonary epithelial cells to produce ACh that enhances NETosis of neutrophils. Our findings demonstrate for the first time that chronic stress induced epithelial cell derived ACh plays a key role in remodeling lung pre-metastatic niche of breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540414PMC
http://dx.doi.org/10.1186/s13046-023-02836-5DOI Listing

Publication Analysis

Top Keywords

chronic stress
44
pre-metastatic niche
16
breast cancer
16
epithelial cells
12
lung
12
lung pre-metastatic
12
niche breast
12
chronic
11
stress
11
induces pulmonary
8

Similar Publications

PGM3 insufficiency: a glycosylation disorder causing a notable T cell defect.

Front Immunol

December 2024

Institute for Immunodeficiency, Center for Chronic Immunodeficiency, University Medical Center Freiburg, Freiburg, Germany.

Background: Hypomorphic mutations in the () gene cause a glycosylation disorder that leads to immunodeficiency. It is often associated with recurrent infections and atopy. The exact etiology of this condition remains unclear.

View Article and Find Full Text PDF

A microenvironment-adaptive GelMA-ODex@RRHD hydrogel for responsive release of HS in promoted chronic diabetic wound repair.

Regen Biomater

November 2024

Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma and Chemical Poisoning, Army Medical University (Third Military Medical University), Chongqing 400038, China.

Chronic diabetic wounds present significant treatment challenges due to their complex microenvironment, often leading to suboptimal healing outcomes. Hydrogen sulfide (HS), a crucial gaseous signaling molecule, has shown great potential in modulating inflammation, oxidative stress and extracellular matrix remodeling, which are essential for effective wound healing. However, conventional HS delivery systems lack the adaptability required to meet the dynamic demands of different healing stages, thereby limiting their therapeutic efficacy.

View Article and Find Full Text PDF

We present a case of a 73-year-old woman with a medical history significant for hyperlipidemia, on pravastatin, who developed Takotsubo cardiomyopathy following a diagnosis of osteoporosis. She presented to the Emergency Department with acute transient left arm pain that resolved spontaneously. Investigations revealed elevated troponin levels, non-specific electrocardiographic changes, no significant coronary artery disease on angiography, and left ventricular systolic dysfunction, findings consistent with Takotsubo cardiomyopathy.

View Article and Find Full Text PDF

Leaky gut syndrome (LGS) is caused by intestinal epithelial injury and increased intestinal permeability due to a variety of factors, including chronic stress, inflammatory bowel disease, diabetes, surgery, and chemotherapy, resulting in an increased influx of matter from the intestinal lumen causing constipation and bacteremia. To our knowledge, this is the first known case of LGS along with () bacteremia in a neurodegenerative disease patient. The patient was an 81-year-old male with a history of Alzheimer's disease, cerebral infarction, and diverticulitis in a psychiatric hospital, fed via a nasogastric tube.

View Article and Find Full Text PDF

Introduction: The transition from low to high altitude environments is associated with a multifaceted series of physiological and psychological alterations that manifest over time. These changes are intricately intertwined, with physiological acclimatization primarily mediated through the regulation of hypoxia-inducible factor (HIF), which orchestrates the expression of critical molecules and hormones. This process extends to encompass the epigenome, metabolism, and other regulatory mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!