Fetal growth restriction (FGR) increases the risk cardiovascular disease (CVD) in adulthood. Placental insufficiency and subsequent chronic fetal hypoxemia are causal factors for FGR, leading to a redistribution of blood flow that prioritizes vital organs. Subclinical signs of cardiovascular dysfunction are evident in growth-restricted neonates; however, the mechanisms programming for CVD in adulthood remain unknown. This study aimed to determine the potential mechanisms underlying structural and functional changes within the heart and essential (carotid) and nonessential (femoral) vascular beds in growth-restricted lambs. Placental insufficiency was surgically induced in ewes at 89 days gestational age (dGA, term = 148dGA). Three age groups were investigated: fetal (126dGA), newborn (24 h after preterm birth), and 4-wk-old lambs. In vivo and histological assessments of cardiovascular indices were undertaken. Resistance femoral artery function was assessed via in vitro wire myography and blockade of key vasoactive pathways including nitric oxide, prostanoids, and endothelium-dependent hyperpolarization. All lambs were normotensive throughout the first 4 wk of life. Overall, the FGR cohort had more globular hearts compared with controls ( = 0.0374). A progressive decline in endothelium-dependent vasodilation was demonstrated in FGR lambs compared with controls. Further investigation revealed that impairment of the prostanoid pathway may drive this reduction in vasodilatory capacity. Clinical indicators of CVD were not observed in our FGR lambs. However, subclinical signs of cardiovascular dysfunction were present in our FGR offspring. This study provides insight into potential mechanisms, such as the prostanoid pathway, that may warrant therapeutic interventions to improve cardiovascular development in growth-restricted newborns. Our findings provide novel insight into the potential mechanisms that program for cardiovascular dysfunction in growth-restricted neonates as our growth-restricted lambs exhibited a progressive decline in endothelium-dependent vasodilation in the femoral artery between birth and 4 wk of age. Subsequent analyses indicated that this reduction in vasodilatory capacity is likely to be mediated by the prostanoid pathway and prostanoids could be a potential target for therapeutic interventions for fetal growth restriction (FGR).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.00495.2023 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!