Polo-like kinase 4 (PLK4) is a key regulator of centriole biogenesis, but how PLK4 selects a single site for procentriole assembly remains unclear. Using ultrastructure expansion microscopy, we show that PLK4 localizes to discrete sites along the wall of parent centrioles. While there is variation in the number of sites PLK4 occupies on the parent centriole, most PLK4 localize at a dominant site that directs procentriole assembly. Inhibition of PLK4 activity leads to stable binding of PLK4 to the centriole and increases occupancy to a maximum of nine sites. We show that self-phosphorylation of an unstructured linker promotes the release of active PLK4 from the centriole to drive the selection of a single site for procentriole assembly. Preventing linker phosphorylation blocks PLK4 turnover, leading to supernumerary sites of PLK4 localization and centriole amplification. Therefore, self-phosphorylation is a major driver of the spatial patterning of PLK4 at the centriole and plays a critical role in selecting a single centriole duplication site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10541313PMC
http://dx.doi.org/10.1083/jcb.202301069DOI Listing

Publication Analysis

Top Keywords

procentriole assembly
16
plk4
12
single site
12
site procentriole
12
plk4 centriole
12
selection single
8
sites plk4
8
centriole
7
site
5
plk4 self-phosphorylation
4

Similar Publications

Visualizing Cartwheel Disassembly Process During Mitosis in Fixed and Live Cells by Fluorescence Microscope.

Methods Mol Biol

November 2024

The Academy for Cell and Life Health, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.

Centrosome is an evolutionarily conserved organelle that comprises two barrel-shaped centrioles surrounded by pericentriolar material (PCM). It functions as the major microtubule-organizing center (MTOC) to regulate cell polarity, motility, intracellular material transport during interphase, and bipolar spindle assembly during mitosis. Cartwheel assembly is considered the first step in the initiation of procentriole biogenesis at early S phase.

View Article and Find Full Text PDF

Time-series reconstruction of the molecular architecture of human centriole assembly.

Cell

April 2024

University of Geneva, Department of Molecular and Cellular Biology, Faculty of Sciences, Geneva, Switzerland. Electronic address:

Centriole biogenesis, as in most organelle assemblies, involves the sequential recruitment of sub-structural elements that will support its function. To uncover this process, we correlated the spatial location of 24 centriolar proteins with structural features using expansion microscopy. A time-series reconstruction of protein distributions throughout human procentriole assembly unveiled the molecular architecture of the centriole biogenesis steps.

View Article and Find Full Text PDF

Centrosome amplification and aneuploidy driven by the HIV-1-induced Vpr•VprBP•Plk4 complex in CD4 T cells.

Nat Commun

March 2024

Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.

HIV-1 infection elevates the risk of developing various cancers, including T-cell lymphoma. Whether HIV-1-encoded proteins directly contribute to oncogenesis remains unknown. We observe that approximately 1-5% of CD4 T cells from the blood of people living with HIV-1 exhibit over-duplicated centrioles, suggesting that centrosome amplification underlies the development of HIV-1-associated cancers by driving aneuploidy.

View Article and Find Full Text PDF

Polo-like kinase 4 (PLK4) is a key regulator of centriole biogenesis, but how PLK4 selects a single site for procentriole assembly remains unclear. Using ultrastructure expansion microscopy, we show that PLK4 localizes to discrete sites along the wall of parent centrioles. While there is variation in the number of sites PLK4 occupies on the parent centriole, most PLK4 localize at a dominant site that directs procentriole assembly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!