Near-Infrared Laser Irradiation-Modulated High-Temperature Solid-Contact Ion-Selective Electrodes: Potentiometric Detection of Ca in Seawater.

ACS Sens

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Provincial Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai Shandong 264003, P. R. China.

Published: November 2023

AI Article Synopsis

  • This study introduces a new method for enhancing the performance of ion-selective electrodes (ISEs) through high-temperature potentiometry using near-infrared (NIR) laser heating.
  • The NIR laser heats mesoporous carbon materials to raise the temperature of solid-contact calcium ISEs to 60-70 °C, significantly improving their potentiometric response by about 30%.
  • The method also demonstrates that pulsed NIR laser irradiation can lead to a linear potentiometric response with an enhanced slope, showcasing the benefits of combining temperature control and transient current for more accurate ion measurements in seawater.

Article Abstract

The high-temperature potentiometry operated by nonisothermal heating is a promising way to break through the traditional potentiometric responses of ion-selective electrodes (ISEs) at room temperature. Herein, a locally heated strategy through near-infrared region (NIR) laser irradiation upon the photothermal mesoporous carbon material placed between the ion-selective membrane and the glassy carbon substrate is introduced to obtain the high-temperature potentiometric performance of a solid-contact Ca-ISE for detection of Ca in seawater. Based on the light-to-heat conversion of the mesoporous carbon-based solid contact, the temperature of the solid-contact Ca-ISE upon continuous NIR laser irradiation can be increased from room temperature to 60-70 °C, and the slope of the electrode is promoted up to about 30% according to the thermodynamic steady-state potentiometric response. The pulsed potentiometric response of the solid-contact Ca-ISE upon a pulsed NIR laser irradiation of 5 s also shows a linear change as a function of Ca activities, and the improved slope from 27.1 ± 0.6 to 38.1 ± 0.9 mV/dec can be obtained under dual control of the temperature of the electrode and the transient current induced by the pulsed NIR laser irradiation. As compared to the traditional potentiometric measurement under zero-current conditions at room temperature, the NIR laser-modulated high-temperature potentiometric response provides an alternative way for measurement of the solid-contact ISEs.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.3c01533DOI Listing

Publication Analysis

Top Keywords

nir laser
16
laser irradiation
16
room temperature
12
solid-contact ca-ise
12
potentiometric response
12
ion-selective electrodes
8
detection seawater
8
traditional potentiometric
8
high-temperature potentiometric
8
pulsed nir
8

Similar Publications

Dual-driven biodegradable nanomotors for enhanced cellular uptake.

J Mater Chem B

January 2025

Bio-Organic Chemistry, Departments of Biomedical Engineering and Chemical Engineering & Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands.

Hybrid nano-sized motors with navigation and self-actuation capabilities have emerged as promising nanocarriers for a wide range of delivery, sensing, and diagnostic applications due to their unique ability to achieve controllable locomotion within a complex biological environment such as tissue. However, most current nanomotors typically operate using a single driving mode, whereas propulsion induced by both external and local stimuli could be more beneficial to achieve efficient motility in a biomedical setting. In this work, we present a hybrid nanomotor by functionalizing biodegradable stomatocytes with platinum nanoparticles (Pt NPs).

View Article and Find Full Text PDF

A Multifunctional MIL-101-NH(Fe) Nanoplatform for Synergistic Melanoma Therapy.

Int J Nanomedicine

January 2025

Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.

Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.

Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).

View Article and Find Full Text PDF

Early diagnosis of tumors allows effective treatment of primary cancers through localized therapeutic interventions. However, developing diagnostic tools for sensitive, simple, and early tumor (especially less than 2 mm in diameter) detection remains a challenge. Herein, we presented a biomarker-activatable nanoprobe that enabled a near-infrared (NIR) photothermally amplified signal for fluorescence imaging and urinalysis of tumor.

View Article and Find Full Text PDF

Carbon-supported Fe single atom nanozymes with long-lasting ROS generation and high NIR photothermal performance for synergistic cancer therapy.

J Colloid Interface Sci

April 2025

High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Science, Hefei, Anhui 230031, PR China; University of Science and Technology of China, Hefei, Anhui 230026, PR China. Electronic address:

Synergistic therapy combining photothermal therapy (PTT) and chemodynamic therapy (CDT) has proven to be a highly effective strategy for cancer treatment. However, PTT heavily relies on the accumulation of therapeutic agents at the tumor site. The peroxidase (POD) activity of common catalysts can be rapidly exhausted during the accumulation process, prior to laser intervention, thereby diminishing the synergistic enhancement effect of the combined therapy.

View Article and Find Full Text PDF

Near-infrared-triggered release of self-accelerating cascade nanoreactor delivered by macrophages for synergistic tumor photothermal therapy/starvation therapy/chemodynamic therapy.

J Colloid Interface Sci

January 2025

State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071 China; National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China.

Macrophages have emerged as promising cellular vehicles for the delivery of therapeutic agents to tumor sites. However, the cytotoxicity of therapeutic agents toward the cellular carriers and the effective release of therapeutic agents at the tumor site remain the main challenges faced by macrophage-mediated drug delivery systems. Herein, a near-infrared (NIR)-triggered release of self-accelerating cascade nanoreactor (HCFG) delivered by macrophages (HCFG@R) was developed for synergistic tumor photothermal therapy (PTT)/starvation therapy (ST)/chemodynamic therapy (CDT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!