A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Investigation of the Potential Targets behind the Promising and Highly Selective Antileishmanial Action of Synthetic Flavonoid Derivatives. | LitMetric

Leishmaniases are among the neglected tropical diseases that still cause devastating health, social, and economic consequences to more than 350 million people worldwide. Despite efforts to combat these vector-borne diseases, their incidence does not decrease. Meanwhile, current antileishmanial drugs are old and highly toxic, and safer presentations are unaffordable to the most severely affected human populations. In a previous study by our research group, we synthesized 17 flavonoid derivatives that demonstrated impressive inhibition capacity against rCPB2.8, rCPB3, and rH84Y. These cysteine proteases are highly expressed in the amastigote stage, the target form of the parasite. However, although these compounds have been already described in the literature, until now, the amastigote effect of any of these molecules has not been proven. In this work, we aimed to deeply analyze the antileishmanial action of this set of synthetic flavonoid derivatives by correlating their ability to inhibit cysteine proteases with the action against the parasite. Among all the synthesized flavonoid derivatives, 11 of them showed high activity against amastigotes of , also providing safety to mammalian host cells. Furthermore, the high production of nitric oxide by infected cells treated with the most active cysteine protease B (CPB) inhibitors confirms a potential immunomodulatory response of macrophages. Besides, considering flavonoids as multitarget drugs, we also investigated other potential antileishmanial mechanisms. The most active compounds were selected to investigate another potential biological pathway behind their antileishmanial action using flow cytometry analysis. The results confirmed an oxidative stress after 48 h of treatment. These data represent an important step toward the validation of CPB as an antileishmanial target, as well as aiding in new drug discovery studies based on this protease.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsinfecdis.3c00336DOI Listing

Publication Analysis

Top Keywords

flavonoid derivatives
16
antileishmanial action
12
synthetic flavonoid
8
synthesized flavonoid
8
cysteine proteases
8
antileishmanial
6
investigation potential
4
potential targets
4
targets promising
4
promising highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!