Purpose: To investigate whether the risk of peripheral nerve stimulation increases in the presence of bulky metallic prostheses implanted in a patient's body.

Methods: A computational tool was used to calculate the electric field (E-field) induced in a realistic human model due to the action of gradient fields. The calculations were performed both on the original version of the anatomical model and on a version modified through "virtual surgery" to incorporate knee, hip, and shoulder prostheses. Five exam positions within a body gradient coil and one position using a head gradient coil were simulated, subjecting the human model to the readout gradient from an EPI sequence. The induced E-field in models with and without prostheses was compared, focusing on the nerves and all other tissues (both including and excluding the bones from the analysis).

Results: In the nerves, the most pronounced increase in the E-field (+24%) was observed around the knee implant during an abdominal MRI (Y axis readout). When extending the analysis to encompass all tissues (excluding bones), the greatest amplification (+360%) occurred around the knee implant during pelvic MRI (Z axis readout). Notable increases in E-field peaks were also identified around the shoulder and hip implants in multiple scenarios.

Conclusion: Based on the presented results, further investigations aimed at quantifying the threshold of nerve stimulation in the presence of bulky implants are desirable.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.29861DOI Listing

Publication Analysis

Top Keywords

electric field
8
nerve stimulation
8
presence bulky
8
human model
8
gradient coil
8
excluding bones
8
knee implant
8
mri axis
8
axis readout
8
orthopedic implants
4

Similar Publications

Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates.

Nano Converg

January 2025

Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.

The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.

View Article and Find Full Text PDF

Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.

View Article and Find Full Text PDF

Dinitrogen Activation: A Novel Approach with P/B Intermolecular FLP.

J Phys Chem A

January 2025

School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.

This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!