Hydrosulfide (HS) is the conjugate base of gasotransmitter hydrogen sulfide (HS) and is a physiologically-relevant small molecule of great interest in the anion sensing community. However, selective sensing and molecular recognition of HS in water remains difficult because, in addition to the diffuse charge and high solvation energy of anions, HS is highly nucleophilic and readily oxidizes into other reactive sulfur species. Moreover, the direct placement of HS in the Hofmeister series remains unclear. Supramolecular host-guest interactions provide a promising platform on which to recognize and bind hydrosulfide, and characterizing the placement of HS in the Hofmeister series would facilitate the future design of selective receptors for this challenging anion. Few examples of supramolecular HS binding have been reported, but the Sindelar group reported HS binding in water using bambus[6]uril macrocycles in 2018. We used this HS binding platform as a starting point to develop a chemically-sensitive field effect transistor (ChemFET) to facilitate assigning HS to a specific place in the Hofmeister series. Specifically, we prepared dodeca--butyl bambus[6]uril and incorporated it into a ChemFET as the HS receptor motif. The resultant device provided an amperometric response to HS, and we used this device to measure the response of other anions, including SO, F, Cl, Br, NO, ClO, and I. Using this response data, we were able to experimentally determine that HS lies between Cl and Br in the Hofmeister series, which matches recent theoretical computational work that predicted a similar placement. Taken together, these results highlight the potential of using molecular recognition coupled with ChemFET architectures to develop new approaches for direct and reversible HS detection and measurement in water and further advance our understanding of different recognition approaches for this challenging anion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530170 | PMC |
http://dx.doi.org/10.1039/d3sc03616b | DOI Listing |
Adv Sci (Weinh)
December 2024
Chair for Functional Materials, Department of Physics, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany.
Understanding the salt effects on solvation behaviors of thermoresponsive polymers is crucial for designing and optimizing responsive systems suitable for diverse environments. In this work, the effect of potassium salts (CHCOOK, KCl, KBr, KI, and KNO) on solvation dynamics of poly(4-(N-(3'-methacrylamidopropyl)-N,N-dimethylammonio) butane-1-sulfonate) (PSBP), poly(N-isopropylmethacrylamide) (PNIPMAM), and PSBP-b-PNIPMAM films is investigated under saturated water and mixed water/methanol vapor via advanced in situ neutron/optical characterization techniques. These findings reveal that potassium salts enhance the films' hygroscopicity or methanol-induced swellability.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
The cloud point temperatures of aqueous poly(-isopropylacrylamide) (PNIPAM) and poly(ethylene) oxide (PEO) solutions were measured from pH 1.0 to pH 13.0 at a constant ionic strength of 100 mM.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
The high activity of water in aqueous battery electrolytes can trigger side reactions, limiting their large-scale application. Additives that form contact pairs (CPs) with cations by coordinating with them can effectively reduce water's activity. However, due to the complex interactions between ions, additives, and solvent molecules and the fact that current strategies for additive screening primarily rely on static physical parameters, the dynamic mechanisms that govern the modulation of ion solvation sheaths are still poorly understood.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino, Firenze 50019, Italy. Electronic address:
Intermolecular forces determine complex chemical structures of exquisite intricacy, like proteins. However even the most advanced theories we have so far rely on too drastic approximations to explain them. Some crucial aspects that dictate structure, specific ion and solvent effects are not accommodated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, North Third Ring Road 15, Chaoyang District, Beijing 100029, P. R. China.
Ionic thermoelectric materials, renowned for their high Seebeck coefficients, are gaining prominence for their potential in harvesting low-grade waste heat. However, the theoretical underpinnings for enhancing the performance of these materials remain underexplored. In this study, the Hoffmeister effect was leveraged to augment the thermoelectric properties of hydrogel-based ionic thermoelectric materials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!