Atherosclerosis (AS) is still the major cause of cardiovascular disease (CVD) as well as stroke. Endothelial metabolic disorder has been found to be activated and then promote endothelial cells (ECs) injury, which is regarded to initiate AS progression. N-acetylneuraminic acid (Neu5Ac), a metabolite produced by hexosamine-sialic acid pathway branching from glucose metabolism, was presented as a notable biomarker of CVD and is positively correlated with ECs function. However, few studies explain whether Neu5Ac regulate AS progression by affecting EC function as well as its involved mechanisms are still unknown. Here, we mimicked an animal model in mice which displaying similar plasma Neu5Ac levels with AS model to investigate its effect on AS progression. We found that Neu5Ac exacerbated plaques area and increased lipids in plasma in absence of HFD feeding, and ECs inflammatory injury was supposed as the triggering factor upon Neu5Ac treatment with increasing expression of IL-1β, ICAM-1, and promoting ability of monocyte adhesion to ECs. Mechanistic studies showed that Neu5Ac facilitated SLC3A2 binding to ubiquitin and then triggered P62 mediated degradation, further leading to accumulation of lipid peroxidation in ECs. Fer-1 could inhibit ECs injury and reverse AS progression induced by Neu5Ac in mice. Interestingly, mitochondrial dysfunction was also partly participated in ECs injury after Neu5Ac treatment and been reversed by Fer-1. Together, our study unveils a new mechanism by which evaluated metabolite Neu5Ac could promote SLC3A2 associated endothelial ferroptosis to activate ECs injury and AS plaque progression, thus providing a new insight into the role of Neu5Ac-ferroptosis pathway in AS. Also, our research revealed that pharmacological inhibition of ferroptosis may provide a novel therapeutic strategy for premature AS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526676 | PMC |
http://dx.doi.org/10.7150/thno.87968 | DOI Listing |
JCI Insight
December 2024
Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, United States of America.
Cerebral endothelial cell (EC) injury and blood-brain barrier (BBB) permeability contribute to neuronal injury in acute neurological disease states. Preclinical experiments have used animal models to study this phenomenon, yet the response of human cerebral ECs to BBB disruption remains unclear. In our Phase 1 clinical trial (NCT04528680), we used low-intensity pulsed ultrasound with microbubbles (LIPU/MB) to induce transient BBB disruption of peri-tumoral brain in patients with recurrent glioblastoma.
View Article and Find Full Text PDFTransplantation
December 2024
Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Engineering Research Center of Natural Polymer-based Medical Materials in Hubei Province, Wuhan, China.
Background: Hypothermic machine perfusion (HMP) is becoming the main preservation method for donation after circulatory death (DCD) kidneys. It can provide continuous flow and form shear stress (SS) upon endothelial cells (ECs), thereby regulating EC injury. Krüppel-like factor 10 (KLF10) has been shown to lessen vascular damage.
View Article and Find Full Text PDFMedicine (Baltimore)
December 2024
Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
Emergency intravascular interventional therapy is the most effective approach to rapidly restore blood flow and manage occlusion of major blood vessels during the initial phase of acute ischemic stroke. Nevertheless, several patients continue to experience ineffective reperfusion or cerebral no-reflow phenomenon, that is, hypoperfusion of cerebral blood supply after treatment. This is primarily attributed to downstream microcirculation disturbance.
View Article and Find Full Text PDFLife Sci
December 2024
Department of Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200092, China. Electronic address:
Pathological vascular remodeling (VR) is characterized by structural and functional alterations in the vascular wall resulting from injury, which significantly contribute to the development of cardiovascular diseases (CVDs). The vascular wall consists primarily of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), and adventitial fibroblasts (AFs), whose interactions are crucial for both the formation of the vascular system and the maintenance of mature blood vessels. Disruptions in the communication between these cell types have been implicated in the progression of VR.
View Article and Find Full Text PDFJ Orthop Surg Res
December 2024
Department of Orthopedics, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang Province, 315000, China.
Background: Tendinopathy is very common in clinical practice, which is highly prevalent in athletes, sports enthusiasts and other people involved in high-load weight-bearing activities. Common types of tendinopathy include rotator cuff injury, Achilles tendinitis, tennis elbow and so on. Macrophages (Macs) are key immune cells in the pathogenesis of tendinopathy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!