A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of mechanical energy transfer during right-forward lunge between female amateur and professional badminton players. | LitMetric

Comparison of mechanical energy transfer during right-forward lunge between female amateur and professional badminton players.

BMC Sports Sci Med Rehabil

Department of corrective exercise & Sport injury, Faculty of physical education and sport sciences, Allameh Tabataba'i University, Tehran, Iran.

Published: September 2023

AI Article Synopsis

  • The study aimed to compare how amateur and professional badminton players utilize mechanical energy during right-forward lunges to assess their movement efficiency.
  • Twenty female players (10 professionals, 10 amateurs) underwent motion analysis to measure kinematics and kinetics of their lower limbs during lunges.
  • Results indicated that professionals displayed better mechanical energy transfer patterns at various joints compared to amateurs, particularly in the ankle and knee, suggesting greater overall movement efficiency.

Article Abstract

Background: Regarding their skill levels, badminton players present different movement patterns during front and right lunging. The main objective of this study was to compare the mechanical energy transfers attributable to right-forward lunges between amateur and professional badminton players to study variations in mechanical efficiency at various skill levels.

Method: In this cross-sectional study, twenty female badminton players were recruited (Professional group n = 10 and Amateur group n = 10). The kinematics and kinetics of the lower extremities were recorded while performing right-forward lunges using Vicon motion capture and Kistler force plates. Mechanical energy expenditures (MEE) were extracted in eccentric transfer, concentric transfer, and no-transfer phases for the hip, knee, and ankle joints. At each joint, mechanical energy compensations (MEC) were also determined. Independent samples t-tests were used to analyze data at a significance level of α = 0.05.

Result: Regards to mechanical energy expenditures at the initial heel contact phase, the professional players demonstrated statistically significant more ankle no-transfer (p < 0.003), less knee concentric transfer (p < 0.026), more knee eccentric transfer (p < 0.001), and less hip no-transfer (p < 0.001). At the same time, the amateur athletes showed significantly more ankle eccentric transfer (p < 0.042) at maximal knee flexion angle time point. Analyzing mechanical energy compensation coefficients showed that the professional athletes had significantly less ankle concentric transfer (p < 0.001), more knee concentric transfer (p < 0.001), more knee eccentric transfer (p < 0.001), and more hip eccentric transfer (p < 0.001) at initial contact phase. While they found to have significantly more ankle eccentric transfer (p < 0.007), less knee concentric transfer (p < 0.001), less knee eccentric transfer (p < 0.001), more hip concentric transfer (p < 0.001), and more hip eccentric transfer (p < 0.001) at maximal knee flexion angle.

Conclusion: it is shown that the mechanical energy efficiency of the right-forward lunge is skill-related. It seems that altered lunge landing biomechanics may increase the risk of ankle and knee injuries and muscular damages in amateur athletes. It is recommended for amateur players to follow a injury prevention training program that promotes proper lunging technique.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538021PMC
http://dx.doi.org/10.1186/s13102-023-00741-0DOI Listing

Publication Analysis

Top Keywords

mechanical energy
20
badminton players
16
amateur professional
8
professional badminton
8
right-forward lunges
8
group n = 10
8
energy expenditures
8
energy
5
players
5
mechanical
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!