Vector control interventions play a fundamental role in the control and elimination of vector-borne diseases. The evaluation of vector control products relies on bioassays, laboratory and semi-field tests using live insects to assess the product's effectiveness. Bioassay method development requires a rigorous validation process to ensure that relevant methods are used to capture appropriate entomological endpoints which accurately and precisely describe likely efficacy against disease vectors as well as product characteristics within the manufacturing tolerance ranges for insecticide content specified by the World Health Organization. Currently, there are no standardized guidelines for bioassay method validation in vector control. This report presents a framework for bioassay validation that draws on accepted validation processes from the chemical and healthcare fields and which can be applied for evaluating bioassays and semi-field tests in vector control. The validation process has been categorized into four stages: preliminary development; feasibility experiments; internal validation, and external validation. A properly validated method combined with an appropriate experimental design and data analyses that account for both the variability of the method and the product is needed to generate reliable estimates of product efficacy to ensure that at-risk communities have timely access to safe and reliable vector control products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540336 | PMC |
http://dx.doi.org/10.1186/s12936-023-04717-w | DOI Listing |
J Agric Food Chem
January 2025
Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China.
The mitochondrial voltage-dependent anion channel (VDAC) is the major channel in the mitochondrial outer membrane for metabolites and ions. VDACs also regulate a variety of biological processes, which vary in the number of VDAC isoforms across different eukaryotes. However, little is known about VDAC-mediated biocontrol traits in biocontrol fungi.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.
Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.
Pest Manag Sci
January 2025
Laboratorio de Bioproducción, Bioinsumos, INIA Las Brujas, Canelones, Uruguay.
Background: Biological control methods involving entomopathogenic fungi like Beauveria bassiana have been shown to be a valuable approach in integrated pest management as an environmentally friendly alternative to control pests and pathogens. Identifying genetic determinants of pathogenicity in B. bassiana is instrumental for enhancing its virulence against insects like the resistant soybean pest Piezodorus guildinii.
View Article and Find Full Text PDFPest Manag Sci
January 2025
College of Plant Protection, Hunan Agricultural University, Changsha, China.
Background: The whitefly Bemisia tabaci is a notorious agricultural pest known for its ability to cause significant crop damage through direct feeding and virus transmission. Its remarkable adaptability and reproductive capacity are linked to its ability to acquire and integrate horizontally transferred genes (HTGs) into its genome. These HTGs increase the physiological and metabolic capacities of this pest, including cholesterol synthesis, which is critical for its survival and reproductive success.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Forest Ecology and Restoration Group (FORECO), Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain.
Background: Biological control in integrated pest management (IPM) often overlooked avian predators until the emergence of the ecosystem services approach. Birds are now recognized as key regulators of pest populations in agroforestry landscapes due to their high mobility. The invasive yellow-legged hornet, introduced into Europe in 2004, threatens agriculture, beekeeping and native pollinators.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!