Implementing Nanovesicles for Boosting the Skin Permeation of Non-steroidal Anti-inflammatory Drugs.

AAPS PharmSciTech

Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt.

Published: September 2023

The consumption of non-steroidal anti-inflammatory drugs (NSAIDs) have increased lately around the world, as they are considered essential and popular drugs for effective reduction of pain and inflammation. They have analgesic, antipyretic, and anti-inflammatory activities; also, it was reported recently that they protect against various critical disorders like heart attacks and cancer. However, oral use of NSAIDs may cause several pulmonary, gastrointestinal, hepatic, cardiovascular, cerebral, and renal complications. Therefore, topical NSAIDs were recommended as a substitute to oral NSAIDs for the treatment of inflammation and pain. Still, the skin permeation of NSAIDs is considered a challenge, as the skin have an effective barrier function. Therefore, this review investigates various advanced vesicular nanocarriers and their applications through the skin, to augment the topical delivery of NSAIDs through stratum corneum over the conventional systems, enhance their effectiveness, and reduce the unwanted side effects. These innovative systems can manage bioavailability, solubility, stability, safety, and efficacy issues present in conventional systems.

Download full-text PDF

Source
http://dx.doi.org/10.1208/s12249-023-02649-xDOI Listing

Publication Analysis

Top Keywords

skin permeation
8
non-steroidal anti-inflammatory
8
anti-inflammatory drugs
8
oral nsaids
8
conventional systems
8
nsaids
6
implementing nanovesicles
4
nanovesicles boosting
4
skin
4
boosting skin
4

Similar Publications

Permeation Enhancer in Microemulsions and Microemulsion-Based Gels: A Comparison of Diethylene Glycol Monoethyl Ether and Oleyl Alcohol.

Gels

January 2025

Department of Pharmacy Practice, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, 3000 Arlington Ave, Toledo, OH 43614, USA.

Microemulsions have been commonly used with various permeation enhancers to improve permeability through the skin. The purpose of this study was to compare the release and permeation ability of two commonly used permeation enhancers-diethylene glycol monoethyl ether (DGME) and oleyl alcohol-by the changes in oil composition, the addition of a gelling agent, and water content using ibuprofen as a model drug. Four microemulsions were formulated, selection was based on ternary phase diagrams, and physicochemical properties were evaluated.

View Article and Find Full Text PDF

Background: Thymoquinone (TQ) is found in the seeds of Nigella sativa. It has immunomodulatory, antibacterial, anti-inflammatory, antioxidant, astringent, antifungal, and antihistaminic properties, making it a highly valuable compound of interest. However, the use of it as a therapeutic drug is highly challenging because of its poor solubility, low bioavailability, and short-term stability.

View Article and Find Full Text PDF

Wound management remains a significant challenge due to complications such as delayed healing and microbial infections, particularly in the conditions like diabetes mellitus, vascular disorders, and immunosuppression. This study aimed to develop a chitosan-coated virgin coconut oil-asiatic acid-loaded nanoemulsion gel (CS-ASA-NEG) to enhance wound healing outcomes. A central composite design (CCD) was employed using Design Expert 11 software to optimize the nanoemulsion formulation, with ternary phase diagrams (TPD) evaluating stable regions for Tween 20: Span 80 (T20:S80) ratios.

View Article and Find Full Text PDF

Exposure experiments and machine learning revealed that personal care products can significantly increase transdermal exposure of SVOCs from the environment.

J Hazard Mater

January 2025

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.

We investigated the impacts of personal care products (PCPs) on dermal exposure to semi-volatile organic compounds (SVOCs), including phthalates, organophosphate esters, polycyclic aromatic hydrocarbons (PAHs), ultraviolet filters, and p-phenylenediamines, through an experiment from volunteers, explored the impact mechanisms of PCP ingredients on dermal exposure, and predicted the PCP effects on SVOC concentrations in human serum using machine learning. After applying PCPs, namely lotion, baby oil, sunscreen, and blemish balm, the dermal adsorption of SVOCs increased significantly by 1.63 ± 0.

View Article and Find Full Text PDF

Green solid lipid nanoparticles by coacervation of fatty acids: An innovative cosmetic ingredient for the delivery of anti-age compounds through the skin.

Int J Pharm

January 2025

University of Turin, Department of Drug Science and Technology, via Pietro Giuria 9, 10125 Turin, Italy; University of Turin, Department of Medical Sciences, Dermatologic Clinic, Via Cherasco 23, 10126 Turin, Italy.

The constant exposure of the skin to internal and external stimuli drives towards skin aging and lost in skin hydration and elasticity. Chronic low-grade inflammation, called inflammaging, and oxidative stress are the leading causes of this phenomenon. Fatty acid coacervation is a preparation method for Solid Lipid Nanoparticles (SLNs), which does not employ solvents, and is associated to low energy consumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!