Fatigue damage prediction is essential for safety of contemporary offshore energy industrial projects, like offshore wind turbines, that are to be designed for sufficiently long operational period of time, with minimal operational disruptions. Offshore structures being designed to withstand environmental loadings due to winds and waves. Due to accumulated fatigue damage, offshore wind floating turbines may develop material cracks in their critical locations sooner than expected. Dataset needed for an accurate assessment of fatigue damage may be produced by either extensive numerical modeling, or direct measurements. However, in reality, temporal length of the underlying dataset being typically too short to provide an accurate calculation of direct fatigue damage and fatigue life. Hence, the objective of this work is to contribute to the development of novel fatigue assessment methods, making better use of limited underlying dataset. In this study, in-situ environmental conditions were incorporated to assess offshore FWT tower base stresses; then structural cumulative fatigue damage has been assessed. Novel deconvolution extrapolation method has been introduced in this study, and it was shown to be able to accurately predict long-term fatigue damage. The latter technique was validated, using artificially reduced dataset, and resulted in fatigue damage that was shown to be close to the damage, calculated from the full original underlying dataset. Recommended method has been shown to utilize available dataset much more efficiently, compared to direct fatigue estimation. Accurate fatigue assessment of offshore wind turbine structural characteristics is essential for structural reliability, design, and operational safety.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10539524 | PMC |
http://dx.doi.org/10.1038/s41598-023-43554-4 | DOI Listing |
Front Neurol
January 2025
Department of Critical Care Medicine, The Fifth People's Hospital of Jinan City, Jinan, China.
Introduction: Chlorfenapyr, a broad-spectrum insecticide and acaricide of the pyrrole-class pesticides, can induce dizziness, fatigue, profuse sweating, and altered consciousness by interfering with cell energy metabolism. However, chlorfenapyr-related rhabdomyolysis has rarely been reported.
Case Presentations: Patient 1 was a healthy 26-year-old man who ingested approximately 30 mL of chlorfenapyr.
Trends Neurosci
January 2025
Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA; Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA. Electronic address:
Chemotherapy treatment can significantly increase the survival of patients with cancer, but it also causes collateral damage in the body that can lead to treatment dose reductions and can reduce patient quality of life. One understudied side effect of chemotherapy is circadian disruption, which is associated with lasting biological and behavioral toxicities. Mechanisms of how chemotherapy alters circadian rhythms remain largely unknown, although leveraging rodent models may provide insights into causes and consequences of this disruption.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou, 730050, China.
Previous researchers have conducted extensive investigations on the impact of various working conditions on fatigue damage. However, further research is still needed to understand the underlying mechanism of how the excitation frequency of cyclic loading affects the fatigue life. This article systematically discloses the phononic origin of atomic scale fatigue resonance, focusing on single-layer molybdenum disulfide (SL MoS) as a prototypical material.
View Article and Find Full Text PDFis rarely associated with neurological manifestations. This report describes a rare case of endocarditis complicated by a cerebral stroke caused by . We also briefly reviewed the neurological clinical spectrum of disease described in the literature.
View Article and Find Full Text PDFLife Sci
January 2025
Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil. Electronic address:
The pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) resulted in over 7 million global fatalities and billions of individuals diagnosed with COVID-19. Acute and chronic muscle impairment associated with SARS-CoV-2 infection affected a substantial number of patients, leading to the development of symptoms such as fatigue, muscle pain, and exercise intolerance. Our study introduces an animal model to improve understanding of the pathogenicity caused by SARS-CoV-2 in human skeletal muscle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!