AI Article Synopsis

  • Recombinant proteins from E. coli often have endotoxin contamination, which complicates their use.
  • Two methods were tested to create E. coli strains with lower lipopolysaccharide (LPS) levels: knocking out genes in the LPS biosynthesis pathway and increasing YciM protein expression.
  • Both approaches successfully reduced endotoxin levels in the purified eGFP samples.

Article Abstract

Recombinant proteins produced in Escherichia coli are often contaminated with endotoxins, which can be a serious problem for their further application. One of the possible solutions is the use of modified strains with reduced lipopolysaccharide (LPS) levels. We compared two approaches to engineering such strains. The first commonly known approach was modification of LPS biosynthesis pathway by knocking out seven genes in the E. coli genome. The second approach, which has not been previously used, was to increase expression of E. coli protein YciM. According to the published data, elevated expression of YciM leads to the reduction in the amount of the LpxC enzyme involved in LPS biosynthesis. We investigated the impact of YciM coexpression with eGFP on the content of endotoxins in the purified recombinant eGFP samples. Both approaches provided similar outcomes, i.e., decreased the endotoxin levels in the purified protein samples.

Download full-text PDF

Source
http://dx.doi.org/10.1134/S0006297923090110DOI Listing

Publication Analysis

Top Keywords

recombinant proteins
8
proteins produced
8
produced escherichia
8
escherichia coli
8
lps biosynthesis
8
upregulation ycim
4
ycim expression
4
expression reduces
4
reduces endotoxin
4
endotoxin contamination
4

Similar Publications

SARS-CoV-2 has continued spreading around the world in recent years since the initial outbreak in 2019, frequently developing into new variants with greater human infectious capacity. SARS-CoV-2 and its mutants use the angiotensin-converting enzyme 2 (ACE2) as a cellular entry receptor, which has triggered several therapeutic strategies against COVID-19 relying on the use of ACE2 recombinant proteins as decoy receptors. In this work, we propose an ACE2 silent Fc fusion protein (ACE2-hFcLALA) as a candidate therapy against COVID-19.

View Article and Find Full Text PDF

The GM2 gangliosidoses, Tay-Sachs disease and Sandhoff disease, are devastating neurodegenerative disorders caused by β-hexosaminidase A (HexA) deficiency. In the Sandhoff disease mouse model, rescue potential was severely reduced when HexA was introduced after disease onset. Here, we assess the effect of recombinant HexA and HexD3, a newly engineered mimetic of HexA optimized for the treatment of Tay-Sachs disease and Sandhoff disease.

View Article and Find Full Text PDF

Background: Tau is a neuronal microtubule associated protein whose interactions with microtubules are regulated by phosphorylation. Tau has numerous putative phosphorylation sites, but it is unclear which combinations of Tau phosphorylation co-occur in the normal state and precisely how they impact Tau function. Adding further complexity, there are six major Tau isoforms arising from alternative splicing.

View Article and Find Full Text PDF

Most of advanced non-small cell lung cancer (NSCLC) patients will experience tumor progression with immunotherapy (IO). Preliminary data suggested an association between high plasma HGF levels and poor response to IO in advanced NSCLC. Our study aimed to evaluate further the role of the HGF/MET pathway in resistance to IO in advanced NSCLC.

View Article and Find Full Text PDF

Background: With insight into the elevated levels of phosphorylation of diseased tau, it is believed that specific modifications occur in a time-dependent manner that contribute to tau's role in Alzheimer's disease pathogenesis and progression. Present methods to obtain phospho-tau (p-tau) from post-mortem tissue or recombinantly are insufficient to answer the foremost questions in the field, and there is currently no way to study each disease-relevant modification reproducibly or in isolation. To this point, learning about tau phosphorylation at the resolution of a single modification has been a major obstacle in clarifying whether certain sites are causative of disease or just a by-product of other harmful mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!