Genotoxicity is an important information that should be included in human biomonitoring programmes. However, the usually applied cytogenetic assays are laborious and time-consuming, reason why it is critical to develop rapid and economic new methods. The aim of this study was to evaluate if the molecular profile of frozen whole blood, acquired by Fourier Transform Infrared (FTIR) spectroscopy, allows to assess genotoxicity in occupational exposure to antineoplastic drugs, as obtained by the cytokinesis-block micronucleus assay. For that purpose, 92 samples of peripheral blood were studied: 46 samples from hospital professionals occupationally exposed to antineoplastic drugs and 46 samples from workers in academia without exposure (controls). It was first evaluated the metabolome from frozen whole blood by methanol precipitation of macromolecules as haemoglobin, followed by centrifugation. The metabolome molecular profile resulted in 3 ratios of spectral bands, significantly different between the exposed and non-exposed group (p < 0.01) and a spectral principal component-linear discriminant analysis (PCA-LDA) model enabling to predict genotoxicity from exposure with 73 % accuracy. After optimization of the dilution degree and solution used, it was possible to obtain a higher number of significant ratios of spectral bands, i.e., 10 ratios significantly different (p < 0.001), highlighting the high sensitivity and specificity of the method. Indeed, the PCA-LDA model, based on the molecular profile of whole blood, enabled to predict genotoxicity from the exposure with an accuracy, sensitivity, and specificity of 92 %, 93 % and 91 %, respectively. All these parameters were achieved based on 1 μL of frozen whole blood, in a high-throughput mode, i.e., based on the simultaneous analysis of 92 samples, in a simple and economic mode. In summary, it can be conclude that this method presents a very promising potential for high-dimension screening of exposure to genotoxic substances.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mrgentox.2023.503681 | DOI Listing |
Expert Opin Biol Ther
January 2025
OU Stephenson Cancer Center, Oklahoma City.
Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.
View Article and Find Full Text PDFMol Diagn Ther
January 2025
Istituto Europeo di Oncologia, IRCCS, Via Adamello 16, 20139, Milan, Italy.
Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.
Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.
Appl Biochem Biotechnol
January 2025
Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, 575018, Karnataka, India.
Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.
View Article and Find Full Text PDFGenes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
The expansion of single-cell analytical techniques has empowered the exploration of diverse biological questions at the individual cells. Droplet-based single-cell RNA sequencing (scRNA-seq) methods have been particularly widely used due to their high-throughput capabilities and small reaction volumes. While commercial systems have contributed to the widespread adoption of droplet-based scRNA-seq, their relatively high cost limits the ability to profile large numbers of cells and samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!