Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Revision total hip arthroplasty (THA) requires preoperatively identifying in situ implants, a time-consuming and sometimes unachievable task. Although deep learning (DL) tools have been attempted to automate this process, existing approaches are limited by classifying few femoral and zero acetabular components, only classify on anterior-posterior (AP) radiographs, and do not report prediction uncertainty or flag outlier data.
Methods: This study introduces Total Hip Arhtroplasty Automated Implant Detector (THA-AID), a DL tool trained on 241,419 radiographs that identifies common designs of 20 femoral and 8 acetabular components from AP, lateral, or oblique views and reports prediction uncertainty using conformal prediction and outlier detection using a custom framework. We evaluated THA-AID using internal, external, and out-of-domain test sets and compared its performance with human experts.
Results: THA-AID achieved internal test set accuracies of 98.9% for both femoral and acetabular components with no significant differences based on radiographic view. The femoral classifier also achieved 97.0% accuracy on the external test set. Adding conformal prediction increased true label prediction by 0.1% for acetabular and 0.7 to 0.9% for femoral components. More than 99% of out-of-domain and >89% of in-domain outlier data were correctly identified by THA-AID.
Conclusions: The THA-AID is an automated tool for implant identification from radiographs with exceptional performance on internal and external test sets and no decrement in performance based on radiographic view. Importantly, this is the first study in orthopedics to our knowledge including uncertainty quantification and outlier detection of a DL model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.arth.2023.09.025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!