As plants encounter various environmental stresses, judicial allocation of resources to stress response is crucial for plant fitness. The plant OXS2 (OXIDATIVE STRESS 2) family has been reported to play important roles in growth regulation and stress response. Here, we report that the maize OXS2 family member ZmOXS2a when expressed in Arabidopsis retards growth including delayed flowering, but improves heat tolerance. ZmOXS2a can be found in the cytoplasm, nucleus and PBs/P bodies (mRNA processing bodies), but heat treatment induces higher accumulation in the PBs. Deletion of ARR (arginine rich region) and TZF (tandem zinc finger) domains for high-affinity RNA-binding reduced PBs accumulation of ZmOXS2a; and unlike ZmOXS2a, expression of this deletion mutant gene affected neither Arabidopsis growth nor heat tolerance. This suggests that ZmOXS2a might be involved in RNA degradation, which would also account for the larger amount of down-regulated genes found in ZmOXS2a expressing lines. Furthermore, 240 of 890 down-regulated genes contain ARE (AU-rich elements) in the mRNA 3'UTR that might be potential targets of ZmOXS2a. Expression of ZmOXS2a also disturbs the response to ABA (abscisic acid) and cytokinin, as GO (gene ontology) analysis shows that 50 and 15 DEGs (differentially expressed genes) are enriched in the GO term for ABA and cytokinin responses, respectively. ZmOXS2a expression lines are more sensitive to ABA, but less sensitive to cytokinin. It is likely that ZmOXS2a promotes the degradation of the mRNA of down-regulated genes containing ARE, which consequently perturbs the hormone pathways that affect stress response-related plant growth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2023.111877 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!