Absence of chordin-like 1 aids motor recovery in a mouse model of stroke.

Exp Neurol

Department of Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA; Department of Neurological Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA. Electronic address:

Published: December 2023

Chordin-like 1 (Chrdl1) is an astrocyte-secreted protein that regulates synaptic maturation, and limits plasticity via GluA2-containing AMPA receptors (AMPARs). It was demonstrated that Chrdl1 expression is very heterogeneous throughout the brain, and it is enriched in astrocytes in cortical layers 2/3, with peak expression in the visual cortex at postnatal day 14. In response to ischemic stroke, Chrdl1 is upregulated during the acute and sub-acute phases in the peri-infarct region, potentially hindering recovery after stroke. Here, we used photothrombosis to model ischemic stroke in the motor cortex of adult male and female mice. In this study, we demonstrate that elimination of Chrdl1 in a global knock-out mouse reduces apoptotic cell death at early post-stroke stages and prevents ischemia-driven synaptic loss of AMPA receptors at later time points, all contributing to faster motor recovery. This suggests that synapse-regulating astrocyte-secreted proteins such as Chrdl1 have therapeutic potential to aid functional recovery after an ischemic injury.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.expneurol.2023.114548DOI Listing

Publication Analysis

Top Keywords

motor recovery
8
ampa receptors
8
ischemic stroke
8
chrdl1
5
absence chordin-like
4
chordin-like aids
4
aids motor
4
recovery
4
recovery mouse
4
mouse model
4

Similar Publications

The development of ground-breaking Survival Motor Neuron (SMN) replacement strategies has revolutionized the field of Spinal Muscular Atrophy (SMA) research. However, the limitations of these therapies have now become evident, highlighting the need for the development of complementary targets beyond SMN replacement. To address these challenges, here we explored, in in vitro and in vivo disease models, Stathmin-2 (STMN2), a neuronal microtubule regulator implicated in neurodegenerative diseases like Amyotrophic Lateral Sclerosis (ALS), as a novel SMN-independent target for SMA therapy.

View Article and Find Full Text PDF

Peripheral nerve injuries (PNI) present substantial challenges due to variability in injury severity and limited regenerative capabilities. Historically, PNI research has focussed on measures such as subjective surgeon outcome grading, two-point discrimination (2PD) and the Medical Research Council (MRC) grading system. While these methods have use, there are also limitations related to subjectivity and sensitivity.

View Article and Find Full Text PDF

Decoding Brain Development and Aging: Pioneering Insights From MRI Techniques.

Invest Radiol

October 2024

From the Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan (A.H., S.K., J.K., M.N., W.U., S.F., T.A., A.W., K.K., S.A.); Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan (A.H., M.N., S.F.); Polytechnique Montréal, Montreal, Quebec, Canada (S.N.); Montreal Heart Institute, University of Montreal, Montreal, Quebec, Canada (S.N.); and Center for Advanced Interdisciplinary Research, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia (S.N.).

The aging process induces a variety of changes in the brain detectable by magnetic resonance imaging (MRI). These changes include alterations in brain volume, fluid-attenuated inversion recovery (FLAIR) white matter hyperintense lesions, and variations in tissue properties such as relaxivity, myelin, iron content, neurite density, and other microstructures. Each MRI technique offers unique insights into the structural and compositional changes occurring in the brain due to normal aging or neurodegenerative diseases.

View Article and Find Full Text PDF

Background: Traumatic Brain Injury (TBI) is a leading cause of hospitalization and disability in young and middle-aged adults. This study aims to survey the efficacy of oral modafinil, a low-side-effect central nervous system stimulant, in the enhancement of consciousness recovery in moderate to severe TBI patients in the ICUs of a referral trauma center.

Materials And Methods: All ICU patients meeting inclusion criteria between April 2021 and April 2023 were screened.

View Article and Find Full Text PDF

Nitric Oxide-Releasing Mesoporous Hollow Cerium Oxide Nanozyme-Based Hydrogel Synergizes with Neural Stem Cell for Spinal Cord Injury Repair.

ACS Nano

December 2024

Department of Pharmacy, Nanjing Medical Center for Clinical Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China.

Neural stem cell (NSCs) transplantation is a promising therapeutic strategy for spinal cord injury (SCI), but its efficacy is greatly limited by the local inhibitory microenvironment. In this study, based on l-arginine (l-Arg)-loaded mesoporous hollow cerium oxide (AhCeO) nanospheres, we constructed an injectable composite hydrogel (AhCeO-Gel) with microenvironment modulation capability. AhCeO-Gel protected NSCs from oxidative damage by eliminating excess reactive oxygen species while continuously delivering Nitric Oxide to the lesion of SCI in a pathological microenvironment, the latter of which effectively promoted the neural differentiation of NSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!