Micro/nanomotors have emerged as promising platforms for various applications, including drug delivery and controlled release. These tiny machines, built from nanoscale materials such as carbon nanotubes, graphene, metal nanoparticles, or nanowires, can convert different forms of energy into mechanical motion. In the field of medicine, nanomotors offer potential for targeted drug delivery and diagnostic applications, revolutionizing areas such as cancer treatment and lab-on-a-chip devices. One prominent material used in drug delivery is hyaluronic acid (HA), known for its biocompatibility and non-immunogenicity. HA-based drug delivery systems have shown promise in improving the efficacy and reducing the toxicity of chemotherapeutic agents like doxorubicin (DOX). Additionally, micro/nanomotors controlled by external stimuli enable precise drug delivery to specific areas of the body. Cold atmospheric plasma (CAP) has also emerged as a promising technology for drug delivery, utilizing low-temperature plasma to enhance drug release and bioavailability. CAP offers advantages such as localized delivery and compatibility with various drug types. However, further research is needed to optimize CAP drug delivery systems and understand their mechanisms. In this study, gold-hyaluronic acid (Au-HA) micromotors were synthesized for the first time, utilizing acoustic force for self-motion. The release profile of DOX, a widely used anticancer drug, was investigated in pH-dependent conditions, and the effect of CAP on drug release from the micromotors was examined. Following exposure to the CAP jet for 1 min, the micromotors released approximately 29 μg mL of DOX into the PBS (pH 5), which is significantly higher than the 17 μg mL released without CAP. The research aims to minimize side effects, increase drug loading and release efficiency, and highlight the potential of HA-based micromotors in cancer therapy. This study contributes to the advancement of micro-motor technology and provides insights into the utilization of pH and cold plasma technology for enhancing drug delivery systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.127075DOI Listing

Publication Analysis

Top Keywords

drug delivery
36
drug
14
delivery systems
12
delivery
10
cold atmospheric
8
atmospheric plasma
8
emerged promising
8
drug release
8
cap drug
8
cap
6

Similar Publications

Translocation across barriers and through constrictions is a mechanism that is often used in vivo for transporting material between compartments. A specific example is apicomplexan parasites invading host cells through the tight junction that acts as a pore, and a similar barrier crossing is involved in drug delivery using lipid vesicles penetrating intact skin. Here, we use triangulated membranes and energy minimization to study the translocation of vesicles through pores with fixed radii.

View Article and Find Full Text PDF

Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria.

View Article and Find Full Text PDF

T cell lymphoma constitutes a complex group of diseases, characterized by heterogeneous molecular features and clinical symptoms, and a dismal outcome no matter the therapeutic strategy chosen. In an attempt to improve patients' survival chances, treatment combinations (chemotherapy, radiotherapy, immunotherapy, gene therapy and thermotherapy) have been tested for their synergistic effects that may dramatically improve outcomes and reduce the side effects of each single modality treatment when therapeutic effects add up while side effects are distributed. In this context, nanoscale drug delivery agents have been developed and exploited to enhance the release of drugs in the treatment of several diseases, showing potential benefits in terms of pharmaceutical flexibility, selectivity, dose reduction and minimization of adverse effects.

View Article and Find Full Text PDF

Ethnic disparities in HbA1c and hypoglycemia among youth with type 1 diabetes: beyond access to technology, social deprivation and mean blood glucose.

BMJ Open Diabetes Res Care

January 2025

Diabetes and Endocrinology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK

Introduction: The UK national pediatric diabetes audit reports higher HbA1c for children and young people (CYP) with type 1 diabetes (T1D) of Black ethnicity compared with White counterparts. This is presumably related to higher mean blood glucose (MBG) due to lower socioeconomic status (SES) and less access to technology. We aimed to determine if HbA1c ethnic disparity persists after accounting for the above variables.

View Article and Find Full Text PDF

Hyaluronic acid modified metal-organic frameworks loading cisplatin achieve combined chemodynamic therapy and chemotherapy for lung cancer.

Int J Biol Macromol

January 2025

Department of Oncology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China. Electronic address:

As one of the most commonly used chemotherapeutic agents in clinical practice, cisplatin is unable to selectively accumulate in tumor tissue due to its lack of targeting ability, leading to increased systemic toxicities. Additionally, the effectiveness of monotherapy is greatly limited. Therefore, the development of new cisplatin-based drug delivery systems is essential to improve the effectiveness of tumor treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!