Plastic production on a global scale is instrumental in advancing modern society. However, plastic can be broken down by mechanical and chemical forces of humans and nature, and knowledge of the fate and effects of plastic, especially nanoplastics, in the aquatic environment remains poor. We provide an overview of current knowledge on the environmental occurrence and toxicity of nanoplastics, and suggestions for future research. There are nanoplastics present in seas, rivers, and nature reserves from Asia, Europe, Antarctica, and the Arctic Ocean at levels of 0.3-488 microgram per liter. Once in the aquatic environment, nanoplastics accumulate in plankton, nekton, benthos through ingestion and adherence, with multiple toxic results including inhibited growth, reproductive abnormalities, oxidative stress, and immune system dysfunction. Further investigations should focus on chemical analysis methods for nanoplastics, effect and mechanism of nanoplastics at environmental relevant concentrations in aquatic organisms, as well as the mechanism of the Trojan horse effect of nanoplastics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.167404 | DOI Listing |
Nanoscale Adv
January 2025
Department of Production Engineering, Faculty of Mechanical Engineering, University of Aleppo Aleppo Syria
Adverse reactions caused by waterborne contaminants constitute a major hazard to the environment. Controlling the pollutants released into aquatic systems through water degradation has been one of the major concerns of recent research. Bismuth-based perovskites have exhibited outstanding properties in the field of photocatalysis.
View Article and Find Full Text PDFiScience
January 2025
Department of Biological Environment, Jiyang College of Zhejiang A&F University, Zhuji, China.
Freshwater pearl farming in China generates wastewater high in ammoniacal nitrogen (NH₃-N) posing environmental threats. This study explores the use of coal fly ash (CFA), an industrial waste, to synthesize A-type zeolite for effective NH₃-N removal from pearl farming wastewater. The zeolite was prepared via pickling pretreatment and hydrothermal methods, resulting in a material with favorable adsorption properties, including cubic and spherical microstructures, a specific surface area of 17.
View Article and Find Full Text PDFAnal Methods
January 2025
Department of Chemistry, University of South Florida, Tampa, Florida 33620, USA.
Sodium dodecyl sulfate (SDS) is widely used in numerous household products and pharmaceuticals due to its excellent water solubility, emulsification, foaming, and dispersing properties. However, the extensive use of SDS has made it a significant environmental pollutant, posing a great threat to aquatic ecosystems. Therefore, developing a rapid, efficient, and sensitive probe for detecting SDS in aqueous environments is crucial.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
Large-scale water diversion projects are essential for meeting the needs of water-stressed regions, necessitating an evaluation of their impact on water quality and aquatic ecosystems. This study provides the first snapshots of organic micropollutants (OMPs) along the 1466 km Eastern Route of China's South-to-North Water Diversion Project. Using nontarget analysis with ultrahigh-performance liquid chromatography and high-resolution mass spectrometry, we identified and quantified 357 OMPs from water samples collected during the water diversion period (WDP) and the nonwater diversion period (NWDP).
View Article and Find Full Text PDFNanotoxicology
January 2025
Department of Biotechnology, Sathyabama Institute of Science and technology, Chennai, Tamil Nadu, India.
The widespread utilization of titanium oxide nanoparticles (TiONPs) in various industrial applications has raised concerns about their potential ecological risks in marine environment. Assessing the toxicity of TiONPs on primary producers is essential to understand their impact on marine ecosystem. This study investigates the acute toxicity effect of TiONPs on COR-A3 cells, focusing on structural and physiological changes that can compromise algal viability and ecological function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!