Pancreatic cancer is highly metastatic and lethal with an increasing incidence globally and a 5-year survival rate of only 8%. One of the factors contributing to the high mortality is the lack of effective drugs in the clinical setting. We speculated that effective compounds against pancreatic cancer exist in natural herbs and explored active small molecules among traditional Chinese medicinal herbs. The small molecule lycorine (MW: 323.77) derived from the herb Lycoris radiata inhibited pancreatic cancer cell growth with an IC value of 1 μM in a concentration-dependent manner. Lycorine markedly reduced pancreatic cancer cell viability, migration, invasion, neovascularization, and gemcitabine resistance. Additionally, lycorine effectively suppressed tumor growth in mouse xenograft models without obvious toxicity. Pharmacological studies revealed that the levels and half-life of Notch1 oncoprotein in the pancreatic cancer cells Panc-1 and Patu8988 were notably reduced. Moreover, the expression of the key vasculogenic genes Semaphorin 4D (Sema4D) and angiopoietin-2 (Ang-2) were also significantly inhibited by lycorine. Mechanistically, lycorine strongly triggered the degradation of Notch1 oncoprotein through the ubiquitin-proteasome system. In conclusion, lycorine effectively inhibits pancreatic cancer cell growth, migration, invasion, neovascularization, and gemcitabine resistance by inducing degradation of Notch1 oncoprotein and downregulating the key vasculogenic genes Sema4D and Ang-2. Our findings provide a new therapeutic candidate and treatment strategy against pancreatic cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bcp.2023.115833 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!