A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Placental MRI segmentation based on multi-receptive field and mixed attention separation mechanism. | LitMetric

Placental MRI segmentation based on multi-receptive field and mixed attention separation mechanism.

Comput Methods Programs Biomed

Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China. Electronic address:

Published: December 2023

Objective: To reduce the occurrence of massive bleeding during placental abruption in patients with placenta accrete, we established a medical imaging based on multi-receptive field and mixed attention separation mechanism (MRF-MAS) model to improve the accuracy of MRI placenta segmentation and provide a basis for subsequent placenta accreta.

Methods: We propose a placenta MRI segmentation technology using the MRF-MAS framework to develop a medical image diagnostic technique. The model first uses the multi-receptive field feature structure to obtain multi-level information, and improves the expression of features at differing scales. Note that the hybrid attention mechanism combines channel attention and spatial attention, separates the input feature sets and computes the attention separately, and finally reorganizes the feature maps. To show that the model can improve the accuracy of segmenting the placenta, we adopt mean Intersection over Union (IoU), Dice similarity coefficient (Dice) and area under the receiver operating characteristic curve (AUC) with U-Net, Mask RCNN, Deeplab v3 for comparison.

Results: The four models achieved different outcomes based on our placenta dataset, with our model IoU and Dice up to 0.8169 and 0.8992, which are 5.51% and 3.03% higher than the average of the three comparison models.

Conclusion: The model proposed by us is helpful to assist the imaging diagnosis and at the same time provides a quantitative reference for the precise treatment of placenta accreta, assists the Equationtion of the clinical operation plan of the physician, and promotes the precision medicine of placenta accreta.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107699DOI Listing

Publication Analysis

Top Keywords

multi-receptive field
12
mri segmentation
8
based multi-receptive
8
field mixed
8
mixed attention
8
attention separation
8
separation mechanism
8
placenta
8
model improve
8
improve accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!