The c.453delC (p.Thr152Profs*14) frameshift mutation in KCNH2 is associated with an elevated risk of Long QT syndrome (LQTS) and fatal arrhythmia. Nevertheless, the loss-of-function mechanism underlying this mutation remains unexplored and necessitates an understanding of electrophysiology. To gain insight into the mechanism of the LQT phenotype, we conducted whole-cell patch-clamp and immunoblot assays, utilizing both a heterologous expression system and patient-derived induced pluripotent stem cell-cardiomyocytes (iPSC-CMs) with 453delC-KCNH2. We also explored the site of translational reinitiation by employing LC/MS mass spectrometry. Contrary to the previous assumption of early termination of translation, the findings of this study indicate that the 453delC-KCNH2 leads to an N-terminally truncated hERG channel, a potential from a non-canonical start codon, with diminished expression and reduced current (IhERG). The co-expression with wildtype KCNH2 produced heteromeric hERG channel with mild dominant-negative effect. Additionally, the heterozygote patient-derived iPSC-CMs exhibited prolonged action potential duration and reduced IhERG, which was ameliorated with the use of a hERG activator, PD-118057. The results of our study offer novel insights into the mechanisms involved in congenital LQTS associated with the 453delC mutation of KCNH2. The mutant results in the formation of less functional N-terminal-truncated channels with reduced amount of membrane expression. A hERG activator is capable of correcting abnormalities in both the heterologous expression system and patient-derived iPSC-CMs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddad165 | DOI Listing |
Stem Cell Res
February 2025
Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Weihui 453100, China. Electronic address:
Long QT syndrome type 2 (LQT2), caused by mutations in the KCNH2 gene, is an inherited ion channel disorder associated with sudden death in adolescents. In this study, we generated a patient-specific induced pluripotent stem cell (iPSC) line XXMUFAi001-A using non-integrative Sendai reprogramming technology from an individual carrying a heterozygous point mutation (c.2690 A>C) in KCNH2.
View Article and Find Full Text PDFAnn Pediatr Cardiol
November 2024
Department of Pediatric Emergency, Sudden Infant Death Syndrome Liguria Centre, Istituto Giannina Gaslini, Genova, Italy.
Uhl's disease is a rare disorder secondary to the uncontrolled destruction of right ventricular myocytes during the perinatal period. We present here the case of a 1-month-old child who died suddenly of Uhl's disease, which was only diagnosed at autopsy and histological examination. From an anamnestic point of view, the child's sister had also died at about 1 month of age from the same pathology.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia.
Zhonghua Er Ke Za Zhi
December 2024
Department of Pediatric Cardiology, Heart Center, First Hospital of Tsinghua University, Beijing100016, China.
Hum Genet
December 2024
Medical Science Department, School of Medicine, Universitat de Girona, C/ Emili Grahit 77, Girona, Catalonia, 17003, Spain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!