Darobactin is a heptapeptide antibiotic featuring an ether cross-link and a C-C cross-link, and both cross-links are installed by a radical S-adenosylmethionine (rSAM) enzyme DarE. How a single DarE enzyme affords the two chemically distinct cross-links remains largely obscure. Herein, by mapping the biosynthetic landscape for darobactin-like RiPP (daropeptide), we identified and characterized two novel daropeptides that lack the C-C cross-link present in darobactin and instead are solely composed of ether cross-links. Phylogenetic and mutagenesis analyses reveal that the daropeptide maturases possess intrinsic multifunctionality, catalyzing not only the formation of ether cross-link but also C-C cross-linking and Ser oxidation. Intriguingly, the different chemical outcomes are controlled by the exact substrate motifs. Our work not only provides a roadmap for the discovery of new daropeptide natural products but also offers insights into the regulatory mechanisms that govern these remarkably versatile ether cross-link-forming rSAM enzymes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.3c04355DOI Listing

Publication Analysis

Top Keywords

ether cross-link-forming
8
ether cross-link
8
cross-link c-c
8
c-c cross-link
8
ether
5
substrate-controlled catalysis
4
catalysis ether
4
cross-link-forming radical
4
radical sam
4
sam enzymes
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!