Our understanding of the microstructure of many plant proteins is based on the ancient and conventional methods of alkali extraction and acid precipitation, which generate considerable amounts of NaCl causing salting-out effects and aggregation of their molecules. In this study, monodisperse rice protein (RP) nanoparticles were prepared using cation-exchange resins that release H and absorb Na, thus avoiding the generation of NaCl during neutralization of the alkali extracts. The generated RP nanoparticles of small diameter (20 nm) and excellent uniformity (0.17 polydispersity) quickly diffuse to and stabilize the oil-water interface, producing oil-in-water Pickering emulsions. The emulsifying ability and emulsion stability afforded with these nanoparticles were 17 and 3.5 times higher than those of nanoparticles prepared by conventional alkali extraction and acid precipitation methods, respectively. Furthermore, increased RP nanoparticle concentration created more stable emulsions with smaller droplets and reduced flocculation index vital for practical applications. This study provides a convincing example of how to prepare monodisperse protein nanoparticles that adsorb at a fluid interface, which may find numerous applications in food and cosmetic formulations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.3c01871DOI Listing

Publication Analysis

Top Keywords

protein nanoparticles
12
nanoparticles prepared
12
prepared cation-exchange
8
cation-exchange resins
8
pickering emulsions
8
alkali extraction
8
extraction acid
8
acid precipitation
8
nanoparticles
6
monodisperse plant
4

Similar Publications

Exosomal miR-552-5p Regulates the Role of NK Cells in EMT of Gastric Cancer via the PD-1/PD-L1 Axis.

J Cancer

January 2025

Department of Gastroenterology and Respiratory Internal Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, P.R. China.

While previous studies have established the role of exosomal miR-552-5p in promoting gastric cancer (GC) progression, the exact mechanisms through which it modulates the PD-1/PD-L1 axis to affect NK cell function and subsequently influence GC epithelial-mesenchymal transition (EMT) remain to be elucidated. Western blot, transmission electron microscopy (TEM), and nanoparticle tracking analysis were used to characterize exosomes that were isolated from GC cell supernatants. Subcutaneous AGS cell injections expressing either Lv-miR-552-5p or Lv-NC were administered to nude BALB/C mice.

View Article and Find Full Text PDF

Local immunomodulation with nanoparticles (NPs) and focused ultrasound (FUS) is recognized for triggering anti-tumor immunity. However, the impact of these tumor immunomodulations on sex-specific microbiome diversity at distant sites and their correlation with therapeutic effectiveness remains unknown. Here, we conducted local intratumoral therapy using immunogenic cell death-enhancing Calreticulin-Nanoparticles (CRT-NPs) and FUS in male and female mice.

View Article and Find Full Text PDF

Cardiac fibroblasts are activated following myocardial infarction (MI) and cardiac fibrosis is a major driver of the growing burden of heart failure. A non-invasive targeting method for activated cardiac fibroblasts would be advantageous because of their importance for imaging and therapy. Targeting was achieved by linking a 7-amino acid peptide (EP9) to a perfluorocarbon-containing nanoemulsion (PFC-NE) for visualization by F-combined with H-MRI.

View Article and Find Full Text PDF

Gene therapy has evolved into a pivotal approach for treating genetic disorders, extending beyond traditional methods of directly repairing or replacing defective genes. Recent advancements in nucleic acid-based therapies-including mRNA, miRNA, siRNA, and DNA treatments have expanded the scope of gene therapy to include strategies that modulate protein expression and deliver functional genetic material without altering the genetic sequence itself. This review focuses on the innovative use of plant-derived nanovesicles (PDNVs) as a promising delivery system for these nucleic acids.

View Article and Find Full Text PDF

Pleural tuberculosis (pTB) is a diagnostic challenge because of its non-specific clinical features, lack of accurate diagnostic tools and paucibacillary nature of the disease. We, here describe the development of a novel magnetic nanoparticle antibody-conjugate and aptamer-based assay (MNp-Ab-Ap assay) targeting 4 different (. ) antigens (GlcB, MPT51, MPT64 and CFP-10) for pTB diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!