Polarons and bipolarons are created when one or two electrons are removed from the π-system of a -type conjugated polymer, respectively. In the traditional band picture, the creation of a polaron causes two electronic energy levels to move into the band gap. The removal of a second electron to form a bipolaron causes the two intragap states to move further into the gap. Several groups, however, who looked at the energies of the Kohn-Sham orbitals from DFT calculations, have recently argued that the traditional band picture is incorrect for explaining the spectroscopy of doped conjugated polymers. Instead, the DFT calculations suggest that polaron creation causes only one unoccupied state to move into the band gap near the valence band edge while half-filled state in the valence band and the conduction band bend downward in energy. To understand the discrepancy, we performed TD-DFT calculations of polarons and bipolarons on poly(3-hexylthiophene) (P3HT). Not only do the TD-DFT-calculated absorption spectra match the experimental absorption spectra, but an analysis using natural transitional orbitals (NTOs), which provides an approximate one-electron picture from the many-electron TD-DFT results, supports the traditional band picture. Our TD-DFT/NTO analysis indicates that the traditional band picture also works for bipolarons, a system for which DFT calculations were unable to determine the electronic structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jctc.3c00743 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!