Accurate estimation of physiological biomarkers using raw waveform data from non-invasive wearable devices requires extensive data preprocessing. An automatic noise detection method in time-series data would offer significant utility for various domains. As data labeling is onerous, having a minimally supervised abnormality detection method for input data, as well as an estimation of the severity of the signal corruptness, is essential. We propose a model-free, time-series biomedical waveform noise detection framework using a Variational Autoencoder coupled with Gaussian Mixture Models, which can detect a range of waveform abnormalities without annotation, providing a confidence metric for each segment. Our technique operates on biomedical signals that exhibit periodicity of heart activities. This framework can be applied to any machine learning or deep learning model as an initial signal validator component. Moreover, the confidence score generated by the proposed framework can be incorporated into different models' optimization to construct confidence-aware modeling. We conduct experiments using dynamic time warping (DTW) distance of segments to validated cardiac cycle morphology. The result confirms that our approach removes noisy cardiac cycles and the remaining signals, classified as clean, exhibit a 59.92% reduction in the standard deviation of DTW distances. Using a dataset of bio-impedance data of 97885 cardiac cycles, we further demonstrate a significant improvement in the downstream task of cuffless blood pressure estimation, with an average reduction of 2.67 mmHg root mean square error (RMSE) of Diastolic Blood pressure and 2.13 mmHg RMSE of systolic blood pressure, with increases of average Pearson correlation of 0.28 and 0.08, with a statistically significant improvement of signal-to-noise ratio respectively in the presence of different synthetic noise sources. This enables burden-free validation of wearable sensor data for downstream biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10984704 | PMC |
http://dx.doi.org/10.1109/JBHI.2023.3320585 | DOI Listing |
Front Med (Lausanne)
December 2024
Software Engineering Department, LUT University, Lahti, Finland.
Introduction: Neurodegenerative diseases, including Parkinson's, Alzheimer's, and epilepsy, pose significant diagnostic and treatment challenges due to their complexity and the gradual degeneration of central nervous system structures. This study introduces a deep learning framework designed to automate neuro-diagnostics, addressing the limitations of current manual interpretation methods, which are often time-consuming and prone to variability.
Methods: We propose a specialized deep convolutional neural network (DCNN) framework aimed at detecting and classifying neurological anomalies in MRI data.
Heliyon
January 2025
Department of Clinical Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
HRP, or horseradish peroxidase, is a reporter enzyme with extensive use in biotechnological applications. We previously reported the purification and characterization of two anionic peroxidases from L. var (black radish) roots.
View Article and Find Full Text PDFBioinform Adv
November 2024
Department of Computer Science, Virginia Tech, Blacksburg, VA 24061, United States.
Motivation: Molecular interaction networks are powerful tools for studying cellular functions. Integrating diverse types of networks enhances performance in downstream tasks such as gene module detection and protein function prediction. The challenge lies in extracting meaningful protein feature representations due to varying levels of sparsity and noise across these heterogeneous networks.
View Article and Find Full Text PDFComput Methods Programs Biomed
December 2024
CenBRAIN Neurotech Center of Excellence, School of Engineering, Westlake University, Zhejiang, Hangzhou, China.
Background: Gastrointestinal (GI) diseases pose significant challenges for healthcare systems, largely due to the complexities involved in their detection and treatment. Despite the advancements in deep neural networks, their high computational demands hinder their practical use in clinical environments.
Objective: This study aims to address the computational inefficiencies of deep neural networks by proposing a lightweight model that integrates model compression techniques, ConvLSTM layers, and ConvNext Blocks, all optimized through Knowledge Distillation (KD).
J Microsc
January 2025
Department of Mechanical, Materials and Aerospace Engineering, University of Liverpool, Liverpool, UK.
Electron backscatter diffraction (EBSD) has developed over the last few decades into a valuable crystallographic characterisation method for a wide range of sample types. Despite these advances, issues such as the complexity of sample preparation, relatively slow acquisition, and damage in beam-sensitive samples, still limit the quantity and quality of interpretable data that can be obtained. To mitigate these issues, here we propose a method based on the subsampling of probe positions and subsequent reconstruction of an incomplete data set.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!