Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Binary zinc oxide (ZnO) nanocomposites with different noble metals, silver (Ag) and ruthenium (Ru), were prepared from an aqueous leaf extract of Callistemon viminalis. The biosynthesized photocatalysts were characterized and examined for their photocatalytic disinfection against Escherichia coli isolated from hospital wastewater. The influence of the different noble metals showed a difference in physicochemical characteristics and photocatalytic efficiency between Ag-ZnO and Ru-ZnO. The photocatalytic degradation of methylene blue and photocatalytic disinfection were found to be in the order Ag-ZnO > Ru-ZnO > ZnO. The photocatalytic disinfection of Ag-ZnO reached a 75% reduction in 60 min, compared to 34 and 9% reductions of Ru-ZnO and ZnO, respectively. The kinetic reaction rate for the photocatalytic disinfection of Ag-ZnO was found to be 2.8 times higher than that of Ru-ZnO. The outstanding photocatalytic activity of Ag-ZnO over Ru-ZnO was attributed to higher crystallinity, greater UVA adsorption capacity, smaller particle size, and the additional antimicrobial effect of Ag itself. The C. viminalis-mediated Ag-ZnO nanocomposites can be a potential candidate for photocatalytic disinfection of drug-resistant E. coli in hospital wastewater.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2023.272 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!