With the rapid development of wearable electronics, low-cost, multifunctional, ultrasensitive touch-free wearables for human-machine interaction and human/plant healthcare management have attracted great attention. The experience of fighting the COVID-19 epidemic has also confirmed the great significance of contactless sensation. Herein, a wearable smart-sensing platform using silk fibroin-reduced graphene oxide (SF-rGO) as bifunctional sensing active layers has been fabricated and integrated with a noncontact moisture/thermo sensor and Joule heater. As a result, the as-prepared smart sensor operated at 0.1 V exhibits good stability and sensitivity (sensor response of 60 for 97% RH) under a wide linear range of 6-97% RH, fast response/recover speed (real test: 21.51 s/85.62 s) toward touch-free humidity/temperature sensing for wearables, and thermal readings that can be accurately corrected by Joule heater. Impressively, it can achieve breath monitoring, mental state prediction, or elevator switching by identifying fingertip humidity variation. Prospectively, this all-in-one wearable smart sensor would set an example for improving sensing performance from structure-function relationship points of view and building a noncontact sensing system for daily life.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c07913DOI Listing

Publication Analysis

Top Keywords

touch-free wearables
8
joule heater
8
smart sensor
8
chemresistor smart
4
smart sensors
4
sensors silk
4
silk fibroin-graphene
4
fibroin-graphene composites
4
composites touch-free
4
wearables rapid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!