The participation of DNA methylation processes in the mechanisms of anterograde and retrograde amnesia caused by impaired reconsolidation of conditioned food aversion memory by NMDA glutamate receptor antagonists or serotonin receptor antagonists, respectively, were studied on grape snails. Anterograde amnesia was characterized by impaired formation of long-term memory during repeated learning. Administration of a DNA methyltransferase (DNMT) inhibitor to amnestic animals resulted in accelerated formation of long-term memory during 1 day of repetitive training vs 3 days during initial training. In serotonin-dependent retrograde amnesia, repeated learning without DNMT inhibitor administration or after inhibitor injections led to the formation of long-term memory. The dynamics of memory formation was similar in both cases and did not differ from that during the initial training: the memory was formed within 3 days of training. Thus, epigenetic processes of DNA methylation are selectively involved in the mechanisms of anterograde amnesia, but do not participate in the mechanisms of retrograde amnesia.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10517-023-05879-yDOI Listing

Publication Analysis

Top Keywords

dna methylation
12
retrograde amnesia
12
formation long-term
12
long-term memory
12
epigenetic processes
8
processes dna
8
methylation selectively
8
selectively involved
8
involved mechanisms
8
mechanisms retrograde
8

Similar Publications

Cytotoxic DNAs, methylation, histones and histones binding proteins are speculated to induce DNA sensors. Under stressed condition, the antigenic patterns, PAMPs and DAMPs, trigger the hyperactive innate response through DNA, DNA-RNA hybrids, oligonucleotides, histones and mtDNA to initiate cGAMP-STING-IFN I cascade. HSV -1&2, HIV, Varicella- Zoster virus, Polyomavirus, Cytomegalovirus, and KSHV negatively regulate the STING-MAVS-TBK-1/1KKE pathway.

View Article and Find Full Text PDF

Objective: To assess CXC chemokine receptor 5 (CXCR5) circulating DNA methylation differences in autoimmune rheumatic diseases and their relation with clinical features.

Methods: Targeted methylation sequencing was performed using peripheral blood from 164 rheumatoid arthritis (RA), 30 systemic lupus erythematosus (SLE), 30 ankylosing spondylitis (AS), 30 psoriatic arthritis (PsA), 24 Sjögren's syndrome (SS) patients, and 30 healthy controls (HC).

Results: Significant differences in CXCR5 cg19599951 methylation were found between RA and HC, as well as AS and SLE.

View Article and Find Full Text PDF

DNA methylation, histone acetylation in the regulation of memory and its modulation during aging.

Front Aging

January 2025

Cellular and Molecular Neurobiology & Drug Targeting Laboratory, Department of Zoology, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India.

Memory formation is associated with constant modifications of neuronal networks and synaptic plasticity gene expression in response to different environmental stimuli and experiences. Dysregulation of synaptic plasticity gene expression affects memory during aging and neurodegenerative diseases. Covalent modifications such as methylation on DNA and acetylation on histones regulate the transcription of synaptic plasticity genes.

View Article and Find Full Text PDF

An updated review on abnormal epigenetic modifications in the pathogenesis of systemic lupus erythematosus.

Front Immunol

January 2025

Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, Second Xiangya Hospital, Central South University, Changsha, China.

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease. The inconsistent prevalence of SLE between monozygotic twins suggests that environmental factors affect the occurrence of this disease. Abnormal epigenetic regulation is strongly associated with the pathogenesis of SLE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!