A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Propofol Pretreatment Inhibits Liver Damage in Mice with Hepatic Ischemia/Reperfusion Injury and Protects Human Hepatocyte in Hypoxia/Reoxygenation. | LitMetric

Background/aims: The major complication of liver resection is hepatic ischemia/reperfusion injury. Propofol appears to have organprotective effects. Our study aimed to study the protective role of propofol against hepatic ischemia/reperfusion injury and the potential mechanisms.

Materials And Methods: Mice and human hepatocytes (LO2) were used to establish 2 models: the ischemia/reperfusion injury model in vivo and the hypoxia/reoxygenation model in vitro, respectively. Alanine and aspartate aminotransferase serum levels were detected to evaluate the extent of hepatic cellular injury. Malondialdehyde, superoxide dismutase, glutathione, and catalase expression levels were measured to evaluate the oxidative damage in mice liver. Lactate dehydrogenase levels were detected for hepatocyte cytotoxicity severity. Nuclear factor, erythroid-like 2 and heme oxygenase 1 expression levels were detected.

Results: In the ischemia/reperfusion model, propofol pretreatment significantly reduced the alanine aminotransferase and aspartate aminotransferase expression levels, alleviating the hepatic cellular injury. Propofol also protected the mice liver from oxidative damage. In the hypoxia/reoxygenation model, propofol pretreatment reduced lactate dehydrogenase expression levels, suggesting its protective effects in LO2 cells. Furthermore, propofol increased the nuclear factor, erythroid-like 2 and heme oxygenase 1 expression levels both in vivo and in vitro.

Conclusion: Propofol acts through the nuclear factor, erythroid-like 2, and heme oxygenase 1 pathway to protect the mice liver against ischemia/reperfusion injury and hepatocytes against hypoxia/reoxygenation injury. Propofol should be used as an effective therapeutic drug for hepatic ischemia/reperfusion injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10724719PMC
http://dx.doi.org/10.5152/tjg.2023.21218DOI Listing

Publication Analysis

Top Keywords

ischemia/reperfusion injury
24
expression levels
20
hepatic ischemia/reperfusion
16
propofol pretreatment
12
injury propofol
12
mice liver
12
nuclear factor
12
factor erythroid-like
12
erythroid-like heme
12
heme oxygenase
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!