A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a novel thermogelling PEC-based ECM mimicking nanocomposite bioink for bone tissue engineering. | LitMetric

Development of a novel thermogelling PEC-based ECM mimicking nanocomposite bioink for bone tissue engineering.

J Biomater Sci Polym Ed

Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India.

Published: December 2023

Non-union of large bone defects has been an existing clinical problem. 3D extrusion-based bioprinting provides an efficient approach to tackle such problems. This approach enables the use of various biomaterials, cell types and growth factors in developing a superior bone graft that is specific to the defect. In this article, we have designed and printed an ECM mimicking, self-assembled polyelectrolyte complex (PEC) based fibrous bioink using natural polymers like chitosan-polygalacturonic acid (PGA) and other biomaterials - gelatin, laponite and nanohydroxyapatite with a modified 3D printer. The developed bioink possesses a thermo-reversible sol-gel transition at physiological pH and temperature. Here, we demonstrated that post-printing, our fiber-reinforced bioink had significant cell proliferation with cell viability of >80% and negligible cell morbidity. The practicability of developing this self-assembled PEC-based bioink was assessed. Bioink with 4% gelatin (PECHLG4) had optimal printability with a minimal swelling ratio of approximately 3%. The printed scaffold had integrity for a period of 8 days under 0.5 mg/mL lysozyme concentration. We also evaluated the mechanical property of the bioink using compression analysis which gave an elastic modulus of 16 KPa. This combination of natural polymers and nanocomposite, along with a fibrous network of PECs, is itself a novel approach for 3D bioprinting and can be a preliminary proposition for the treatment of large bone defects.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2023.2265143DOI Listing

Publication Analysis

Top Keywords

ecm mimicking
8
large bone
8
bone defects
8
natural polymers
8
bioink
7
development novel
4
novel thermogelling
4
thermogelling pec-based
4
pec-based ecm
4
mimicking nanocomposite
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!