Antimicrobial susceptibility test and report guidelines are an important tool for antimicrobial stewardship programs. Since 1972, Tables 1 within the Clinical and Laboratory Standards Institute (CLSI) M100 document have provided a general framework upon which clinical microbiologists and antimicrobial stewardship teams can build algorithms for susceptibility testing and reporting that meet the specific needs of their institution. Many changes were made to Tables 1 in M100-Ed33 to modernize the content to reflect the landscape of current clinical practice, including the growing armamentarium of antimicrobial agents, the emergence of new mechanisms of antimicrobial resistance, the increasing prevalence of infections caused by multidrug-resistant organisms, and updated consensus recommendations for first-choice and alternative agents for treatment. With these items in mind, the CLSI Table 1 working group revised Tables 1 with the ultimate goal of supporting institutions in the creation of individualized test and report strategies that support local antimicrobial stewardship program initiatives. These strategies are built on the concepts of selective and cascade reporting. This minireview introduces the concept of CLSI M100-Ed33 Tables 1, describes the changes to Tables 1 introduced in 2023, and provides clinical vignettes that demonstrate how Tables 1 can be used in various scenarios to devise antimicrobial susceptibility test and report strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10662363PMC
http://dx.doi.org/10.1128/jcm.00074-22DOI Listing

Publication Analysis

Top Keywords

antimicrobial stewardship
16
antimicrobial susceptibility
12
test report
12
antimicrobial
8
susceptibility testing
8
testing reporting
8
susceptibility test
8
changes tables
8
report strategies
8
tables
6

Similar Publications

Purpose: Mortality and morbidity of patients with bloodstream infection (BSI) remain high despite advances in diagnostic methods and efforts to speed up reporting. This study investigated the impact of reporting rapid Minimum Inhibitory Concentration (MIC)-results in Gram negative BSIs with the ASTar system (Q-linea, Uppsala, Sweden) on the adaptation of empirically started antimicrobial therapy. We performed a real-world study during which antimicrobial susceptibility testing (AST) results were instantly reported to the treating physician in an established multidisciplinary antimicrobial stewardship setting.

View Article and Find Full Text PDF

The growing prevalence of antibiotic-resistant bacteria within the human microbiome has become a pressing global health crisis. While antibiotics have revolutionized medicine by significantly reducing mortality and enabling advanced medical interventions, their misuse and overuse have led to the emergence of resistant bacterial strains. Key resistance mechanisms include genetic mutations, horizontal gene transfer, and biofilm formation, with the human microbiota acting as a reservoir for antibiotic resistance genes (ARGs).

View Article and Find Full Text PDF

Background/objectives: The rapid spread of antimicrobial resistance (AMR) presents a critical threat to global health. Primary care plays a significant role in this crisis, with oral antibacterial drugs among the most prescribed medications. Antibacterial prescribing rates are often high and complicated in out-of-hours (OOH) services, including weekdays outside regular hours, weekends, and holidays, potentially exacerbating AMR.

View Article and Find Full Text PDF

The rising threat of antimicrobial resistance (AMR) is a global concern in both human and veterinary medicine, with multidrug-resistant (MDR) pathogens such as and presenting significant challenges. : This study evaluates the effectiveness of amoxicillin against these MDR pathogens in canine isolates using pharmacokinetic and pharmacodynamic parameters. : Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and mutation prevention concentration (MPC) were assessed.

View Article and Find Full Text PDF

The presence of antibiotic residues (ARs) in animal products such as milk can be an important driver of antimicrobial resistance in commensal and pathogenic bacteria. Previous studies on ARs in Nepal have demonstrated the presence of ARs in milk samples but without further characterization of the samples for risk factor analysis. This study aimed to quantify the prevalence and risk factors for the presence of ARs in 140 peri-urban dairy farms in Kathmandu, Nepal, included in a cross-sectional survey in 2019 to estimate farm-level AR prevalence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!