Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of arylcoumarin derivatives and two novel biscoumarin derivatives were investigated for their human recombinant glutathione S-transferase P1-1 (GSTP1-1) enzyme inhibitory activities for the first time. 4-(3,4-Dihydroxyphenyl)-6,7-dihydroxycoumarin (compound ) was observed to be the most active coumarin derivative (IC: 0.14 µM). The inhibition was found to be time-dependent and irreversible. Hypothetical binding modes of the ten most active compounds were calculated by molecular docking. Ligand efficiency indices (LEI) were estimated to better understand the binding performance of the coumarin derivatives. Extensive structure-activity relationship studies showed that hydroxy substitution on both the coumarin and the aryl ring enhanced the biological activity and the position of hydroxy group on the coumarin ring is critical for the binding pose and the activity. Top three ligands were subjected to molecular dynamics simulations and MM/PBSA for further investigation. Binding mode of compound suggested that its high inhibitory activity might be attributed to its position between Tyr7 and the cofactor, glutathione (GS-DNB). Exhibiting favorable druglikeness profiles and pharmacokinetics based on ADME studies, compound and can be considered as potential drug leads in future studies for further development.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2023.2262598 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!