Solid tumors are characterized by enhanced metabolism of lipid, particularly cholesterol, inspiring the exploration of metabolic therapy through cholesterol oxidase (COD)-mediated cholesterol deprivation. However, the therapeutic efficacy of COD is limited due to the hypoxic tumor microenvironment and the protective autophagy triggered by cholesterol deprivation. Herein, a combination therapy for metabolically treating solid tumors through COD in conjunction with molybdenum oxide nanodots (MONDs), which serve as both potent oxygen generators and autophagy inhibitors, is reported. MONDs convert H O (arising from COD-mediated cholesterol oxidation) into O , which is then recycled by COD to form reciprocal feedback for cholesterol depletion. Concurrently, MONDs can overcome autophagy-induced therapeutic resistance frequently occurring in conventional nutrient deprivation therapy by activating AKT/mTOR pathway phosphorylation. Combination therapy in the xenograft model results in an ≈5-fold increase in therapeutic efficiency as compared with COD treatment alone. This functionally cooperative metabolic coupling strategy holds great promise as a novel polytherapy approach that will benefit patients with solid tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202302020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!