Baculoviruses are insect-specific DNA viruses that have been exploited as bioinsecticides for the control of agricultural and forest pests around the world. Mixed infections with two different baculoviruses have been found in nature, infecting the same host. They have been studied to understand the biology of virus interactions, their effects on susceptible insects, and their insecticidal implications. In this work, we summarize and analyze the in vivo baculovirus co-infections reported in the literature, mainly focusing on pest biocontrol applications. We discuss the most common terms used to describe the effects of mixed infections, such as synergism, neutralism, and antagonism, and how to determine them based on host mortality. Frequently, baculovirus co-infections found in nature are caused by a combination of a nucleopolyhedrovirus and a granulovirus. Studies performed with mixed infections indicated that viral dose, larval stage, or the presence of synergistic factors in baculovirus occlusion bodies are important for the type of virus interaction. We also enumerate and discuss technical aspects to take into account in studies on mixed infections, such as statistical procedures, quantification of viral inocula, the selection of instars, and molecular methodologies for an appropriate analysis of baculovirus interaction. Several experimental infections using two different baculoviruses demonstrated increased viral mortality or a synergistic effect on the target larvae compared to single infections. This can be exploited to improve the baculovirus-killing properties of commercial formulations. In this work, we offer a current overview of baculovirus interactions in vivo and discuss their potential applications in pest control strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534452 | PMC |
http://dx.doi.org/10.3390/v15091838 | DOI Listing |
Aim: To understand how Black or African American women living with HIV (WLH) experience different types of stigma in their daily lives.
Design: Secondary analysis of quantitative and qualitative data from a recent clinical trial in Baltimore, Maryland.
Methods: Quantitative data were collected in the baseline survey, and qualitative data were gathered during 6-month follow-up focus group and individual interviews.
Keystone engineers profoundly influence microbial communities by altering their shared environment, often by modifying key resources. Here, we show that in an antibiotic-treated microbial community, bacterial spread is controlled by keystone engineering affecting dispersal- an effect hidden in well-mixed environments. Focusing on two pathogens, non-motile Klebsiella pneumoniae and motile Pseudomonas aeruginosa, we found that both tolerate a β-lactam antibiotic, with Pseudomonas being more resilient and dominating in well-mixed cultures.
View Article and Find Full Text PDFCureus
December 2024
Internal Medicine, Medical Teaching Institution (MTI) Hayatabad Medical Complex, Peshawar, PAK.
Background: Malaria and dengue are significant mosquito-borne diseases prevalent in tropical and subtropical climates, with increasing reports of co-infections. This study aimed to determine the frequency, patterns, and risk factors of these co-infections in Peshawar.
Methods: A cross-sectional study was conducted from June to December 2023 in three tertiary care hospitals in Peshawar.
Cureus
December 2024
Department of Internal Medicine, Hiroshima City Funairi Citizens Hospital, Hiroshima, JPN.
Although human metapneumovirus(hMPV) infection can induce severe symptoms in older adults or immunocompromised patients, it usually causes mild symptoms in young immunocompetent adults. The prevalence of hMPV infectious disease is highest during the late winter and early summer. We report a hypoxemic case of hMPV infection in a young immunocompetent man that occurred in the first autumn after the reclassification of coronavirus disease (COVID-19) from Class 2 to Class 5.
View Article and Find Full Text PDFAlthough granulomatous interstitial nephritis (GIN) is a rare histological finding in kidney transplants, the joint occurrence of GIN and focal segmental glomerulosclerosis (FSGS) has not, to our knowledge, been reported in the literature. We report a case of GIN and de novo FSGS in kidney transplant recipients leading to allograft failure. A 69-year-old male with a history of end-stage renal disease (ESRD) of unknown etiology, as well as liver failure from hepatitis B and C co-infection, initially had a living unrelated kidney transplant (LURT) in 2007 and subsequently received both liver and kidney transplants (SLKTs) in 2017.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!