Characterisation of the Novel Filamentous Phage PMBT54 Infecting the Milk Spoilage Bacteria and .

Viruses

Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Hermann-Weigmann-Str. 1, 24103 Kiel, Germany.

Published: August 2023

Filamentous bacteriophages are lysogenic and pseudo-lysogenic viruses that do not lyse their host but are often continuously secreted from the infected cell. They belong to the order , which encompasses three families, with the being the largest. While the number of identified inoviral sequences has greatly increased in recent years due to metagenomic studies, morphological and physiological characterisation is still restricted to only a few members of the filamentous phages. Here, we describe the novel filamentous phage PMBT54, which infects the spoilage-relevant species and . Its genome is 7320 bp in size, has a mol% GC content of 48.37, and codes for 13 open-reading frames, two of which are located on the (-) strand. The virion exhibits a typical filamentous morphology and is secreted from the host cell at various lengths. The phage was shown to promote biofilm formation in both host strains and, therefore, has potential implications for milk spoilage, as biofilms are a major concern in the dairy industry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534721PMC
http://dx.doi.org/10.3390/v15091781DOI Listing

Publication Analysis

Top Keywords

novel filamentous
8
filamentous phage
8
phage pmbt54
8
milk spoilage
8
filamentous
5
characterisation novel
4
pmbt54 infecting
4
infecting milk
4
spoilage bacteria
4
bacteria filamentous
4

Similar Publications

Cancer continues to represent a substantial burden in terms of its morbidity and mortality, underscoring the imperative for the development of novel and efficacious treatment modalities. Recent advances in cancer immunotherapy have highlighted the importance of identifying tumour-specific antigens, which can assist the immune system in targeting malignant cells effectively. Phage display technology has emerged as an effective tool for the discovery of novel antigens through cDNA library screening, representing a significant advancement in the field of immunological research.

View Article and Find Full Text PDF

Kinetics and Optimality of Influenza A Virus Locomotion.

Phys Rev Lett

December 2024

Chan Zuckerberg Biohub-San Francisco, 499 Illinois Street, San Francisco, California 94158, USA.

Influenza A viruses (IAVs) must navigate through a dense extracellular mucus to infect airway epithelial cells. The mucous layer, composed of glycosylated biopolymers (mucins), presents sialic acid that binds to ligands on the viral envelope and can be irreversibly cleaved by viral enzymes. It was recently discovered that filamentous IAVs exhibit directed persistent motion along their long axis on sialic acid-coated surfaces.

View Article and Find Full Text PDF

As a result of human activities, surface waters worldwide are experiencing increasing levels of eutrophication, leading to more frequent occurrences of microalgae, including harmful algal blooms. We aimed to investigate the impact of decomposing camelina straw on mixed phytoplankton communities from eutrophic water bodies, comparing it to the effects of barley straw. The research was carried out in 15 aquaria (five of each type - containing no straw, camelina straw, and barley straw).

View Article and Find Full Text PDF

Bacteria encounter numerous stressors in their constantly changing environments and have evolved many methods to deal with stressors quickly and effectively. One well-known and broadly conserved stress response in bacteria is the stringent response, mediated by the alarmone (p)ppGpp. (p)ppGpp is produced in response to amino acid starvation and other nutrient limitations and stresses and regulates both the activity of proteins and expression of genes.

View Article and Find Full Text PDF

Magnolol as an Antibacterial Agent Against Drug-resistant Bacteria Targeting Filamentous Temperature-sensitive Mutant Z.

Chem Biodivers

December 2024

State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P. R. China.

The emergence of multiple drug-resistant bacteria poses critical health threats worldwide. It is urgently needed to develop potent and safe antibacterial agents with novel bactericidal mechanisms to treat these infections. In this study, magnolol was identified as a potential bacterial cell division inhibitor by a cell-based screening approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!