Routine assessments of gait and balance have been recognized as an effective approach for preventing falls by issuing early warnings and implementing appropriate interventions. However, current limited public healthcare resources cannot meet the demand for continuous monitoring of deteriorations in gait and balance. The objective of this study was to develop and evaluate the feasibility of a prototype surrogate system driven by sensor technology and multi-sourced heterogeneous data analytics, for gait and balance assessment and monitoring. The system was designed to analyze users' multi-mode data streams collected via inertial sensors and a depth camera while performing a 3-m timed up and go test, a five-times-sit-to-stand test, and a Romberg test, for predicting scores on clinical measurements by physiotherapists. Generalized regression of sensor data was conducted to build prediction models for gait and balance estimations. Demographic correlations with user acceptance behaviors were analyzed using ordinal logistic regression. Forty-four older adults (38 females) were recruited in this pilot study (mean age = 78.5 years, standard deviation [SD] = 6.2 years). The participants perceived that using the system for their gait and balance monitoring was a good idea (mean = 5.45, SD = 0.76) and easy (mean = 4.95, SD = 1.09), and that the system is useful in improving their health (mean = 5.32, SD = 0.83), is trustworthy (mean = 5.04, SD = 0.88), and has a good fit between task and technology (mean = 4.97, SD = 0.84). In general, the participants showed a positive intention to use the proposed system in their gait and balance management (mean = 5.22, SD = 1.10). Demographic correlations with user acceptance are discussed. This study provides preliminary evidence supporting the feasibility of using a sensor-technology-augmented system to manage the gait and balance of community-dwelling older adults. The intervention is validated as being acceptable, viable, and valuable.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535689 | PMC |
http://dx.doi.org/10.3390/s23188008 | DOI Listing |
Cochrane Database Syst Rev
January 2025
Department of Rehabilitation Medicine, Amsterdam UMC, location University of Amsterdam, Meibergdreef 9, Amsterdam, Netherlands.
Background: Calf muscle weakness is a common symptom in slowly progressive neuromuscular disorders that lead to walking problems like instability and increased walking effort. The mainstay of treatment to improve walking in this population is the provision of ankle-foot-orthoses (AFOs). Since we are not aware of an up-to-date and complete overview of the effects of AFOs used for calf muscle weakness in slowly progressive neuromuscular disorders, we reviewed the evidence for the effectiveness of AFOs to improve walking in this patient group, in order to support clinical decision-making.
View Article and Find Full Text PDFTop Stroke Rehabil
January 2025
Department of Health Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Background: The ability to step over an obstacle is often evaluated as part of fall-risk and balance assessments. Although different obstacle-crossing tests exist, their comparative predictive validity in stroke is unknown.
Objectives: To examine the predictive validity of different obstacle depths and different obstacle-crossing tests, including a novel, custom-height test and an existing "one-size-fits-all" obstacle test, for predicting post-stroke fallers.
Curr Med Imaging
January 2025
Department of Radiology, Beijing Friendship Hospital, Capital Medical University, No. 95, Yong An Road, Xicheng District, Beijing 100050, China.
Background: The neuroanatomical basis of white matter fiber tracts in gait impairments in individuals suffering from Parkinson's Disease (PD) is unclear.
Methods: Twenty-four individuals living with PD and 29 Healthy Controls (HCs) were included. For each participant, two-shell High Angular Resolution Diffusion Imaging (HARDI) and high-resolution 3D structural images were acquired using the 3T MRI.
J Orthop Surg Res
January 2025
Excellence Center for Hip & Knee Arthroplasty, Department of Orthopedic Surgery, Zuyderland Medical Center, Heerlen, The Netherlands.
Introduction: In 2020, 368 million people globally were affected by knee osteoarthritis, and prevalence is projected to increase with 74% by 2050. Relatively high rates of dissatisfactory results after total knee arthroplasty (TKA), as reported by approximately 20% of patients, may be caused by sub-optimal knee alignment and balancing. While mechanical alignment has traditionally been the goal, patient-specific alignment strategies are gaining interest.
View Article and Find Full Text PDFExpert Rev Med Devices
January 2025
Department of Sport, Exercise and Rehabilitation, Northumbria University, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!