Isthmic spondylolysis results in fracture of pars interarticularis of the lumbar spine, found in as many as half of adolescent athletes with persistent low back pain. While computed tomography (CT) is the gold standard for the diagnosis of spondylolysis, the use of ionizing radiation near reproductive organs in young subjects is undesirable. While magnetic resonance imaging (MRI) is preferable, it has lowered sensitivity for detecting the condition. Recently, it has been shown that ultrashort echo time (UTE) MRI can provide markedly improved bone contrast compared to conventional MRI. To take UTE MRI further, we developed supervised deep learning tools to generate (1) CT-like images and (2) saliency maps of fracture probability from UTE MRI, using ex vivo preparation of cadaveric spines. We further compared quantitative metrics of the contrast-to-noise ratio (CNR), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) between UTE MRI (inverted to make the appearance similar to CT) and CT and between CT-like images and CT. Qualitative results demonstrated the feasibility of successfully generating CT-like images from UTE MRI to provide easier interpretability for bone fractures thanks to improved image contrast and CNR. Quantitatively, the mean CNR of bone against defect-filled tissue was 35, 97, and 146 for UTE MRI, CT-like, and CT images, respectively, being significantly higher for CT-like than UTE MRI images. For the image similarity metrics using the CT image as the reference, CT-like images provided a significantly lower mean MSE (0.038 vs. 0.0528), higher mean PSNR (28.6 vs. 16.5), and higher SSIM (0.73 vs. 0.68) compared to UTE MRI images. Additionally, the saliency maps enabled quick detection of the location with probable pars fracture by providing visual cues to the reader. This proof-of-concept study is limited to the data from ex vivo samples, and additional work in human subjects with spondylolysis would be necessary to refine the models for clinical use. Nonetheless, this study shows that the utilization of UTE MRI and deep learning tools could be highly useful for the evaluation of isthmic spondylolysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538057 | PMC |
http://dx.doi.org/10.3390/s23188001 | DOI Listing |
Magn Reson Med
January 2025
Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany.
Purpose: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis.
View Article and Find Full Text PDFBMC Med Imaging
January 2025
School of Medical Technology, Shaanxi University of Chinese Medicine, Xian Yang, 712046, China.
Objective: This study aims to evaluate the efficacy of two free-breathing magnetic resonance imaging (MRI) sequences-spiral ultrashort echo time (spiral UTE) and radial volumetric interpolated breath-hold examination (radial VIBE).
Methods: Patients were prospectively enrolled between February 2021 and September 2022. All participants underwent both 3T MRI scanning, utilizing the radial VIBE sequence and spiral UTE sequence, as well as standard chest CT imaging.
J Magn Reson Imaging
January 2025
Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Osteoarthritis (OA) is heterogeneous and involves structural changes in the whole joint, such as cartilage, meniscus/labrum, ligaments, and tendons, mainly with short T2 relaxation times. Detecting OA before the onset of irreversible changes is crucial for early proactive management and limit growing disease burden. The more recent advanced quantitative imaging techniques and deep learning (DL) algorithms in musculoskeletal imaging have shown great potential for visualizing "pre-OA.
View Article and Find Full Text PDFBull Exp Biol Med
December 2024
Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia.
Eur Radiol Exp
January 2025
Guilloz Imaging Department, Central Hospital, University Hospital Center of Nancy, 29 Avenue du Marechal de Lattre de Tassigny, 54000, Nancy, France.
Background: We evaluated the accuracy of magnetic resonance imaging (MRI) computed tomography (CT)-like sequences compared to normal-resolution CT (NR-CT) and super-high-resolution CT (SHR-CT) for planning of cochlear implantation.
Methods: Six cadaveric temporal bone specimens were used. 3-T MRI scans were performed using radial volumetric interpolated breath-hold (STARVIBE), pointwise-encoding time reduction with radial acquisition (PETRA), and ultrashort time of echo (UTE) sequences.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!