A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Blockchain-Based Smart Farm Security Framework for the Internet of Things. | LitMetric

Blockchain-Based Smart Farm Security Framework for the Internet of Things.

Sensors (Basel)

School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China.

Published: September 2023

Smart farming, as a branch of the Internet of Things (IoT), combines the recognition of agricultural economic competencies and the progress of data and information collected from connected devices with statistical analysis to characterize the essentials of the assimilated information, allowing farmers to make intelligent conclusions that will maximize the harvest benefit. However, the integration of advanced technologies requires the adoption of high-tech security approaches. In this paper, we present a framework that promises to enhance the security and privacy of smart farms by leveraging the decentralized nature of blockchain technology. The framework stores and manages data acquired from IoT devices installed in smart farms using a distributed ledger architecture, which provides secure and tamper-proof data storage and ensures the integrity and validity of the data. The study uses the AWS cloud, ESP32, the smart farm security monitoring framework, and the Ethereum Rinkeby smart contract mechanism, which enables the automated execution of pre-defined rules and regulations. As a result of a proof-of-concept implementation, the system can detect and respond to security threats in real time, and the results illustrate its usefulness in improving the security of smart farms. The number of accepted blockchain transactions on smart farming requests fell from 189,000 to 109,450 after carrying out the first three tests while the next three testing phases showed a rise in the number of blockchain transactions accepted on smart farming requests from 176,000 to 290,786. We further observed that the lesser the time taken to induce the device alarm, the higher the number of blockchain transactions accepted on smart farming requests, which demonstrates the efficacy of blockchain-based poisoning attack mitigation in smart farming.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537743PMC
http://dx.doi.org/10.3390/s23187992DOI Listing

Publication Analysis

Top Keywords

smart farming
20
smart farms
12
blockchain transactions
12
farming requests
12
smart
10
smart farm
8
farm security
8
internet things
8
number blockchain
8
transactions accepted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!