A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Trajectory Planner for UAVs Based on Potential Field Obtained by a Kinodynamic Gene Regulation Network. | LitMetric

AI Article Synopsis

  • Quadrotor UAVs face complex environmental challenges that require effective trajectory planning for safe and efficient flights.
  • The study introduces a novel trajectory planner that integrates environmental factors and the UAV's dynamic state using a kinodynamic gene regulation network potential field.
  • This approach enhances adaptability and stability in generating flight paths, demonstrating its effectiveness through empirical results.

Article Abstract

Quadrotor unmanned aerial vehicles (UAVs) often encounter intricate environmental and dynamic limitations in real-world applications, underscoring the significance of proficient trajectory planning for ensuring both safety and efficiency during flights. To tackle this challenge, we introduce an innovative approach that harmonizes sophisticated environmental insights with the dynamic state of a UAV within a potential field framework. Our proposition entails a quadrotor trajectory planner grounded in a kinodynamic gene regulation network potential field. The pivotal contribution of this study lies in the amalgamation of environmental perceptions and kinodynamic constraints within a newly devised gene regulation network (GRN) potential field. By enhancing the gene regulation network model, the potential field becomes adaptable to the UAV's dynamic conditions and its surroundings, thereby extending the GRN into a kinodynamic GRN (K-GRN). The trajectory planner excels at charting courses that guide the quadrotor UAV through intricate environments while taking dynamic constraints into account. The amalgamation of environmental insights and kinodynamic constraints within the potential field framework bolsters the adaptability and stability of the generated trajectories. Empirical results substantiate the efficacy of our proposed methodology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535329PMC
http://dx.doi.org/10.3390/s23187982DOI Listing

Publication Analysis

Top Keywords

potential field
24
gene regulation
16
regulation network
16
trajectory planner
12
kinodynamic gene
8
environmental insights
8
field framework
8
amalgamation environmental
8
kinodynamic constraints
8
potential
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!