A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Explainable Risk Prediction of Post-Stroke Adverse Mental Outcomes Using Machine Learning Techniques in a Population of 1780 Patients. | LitMetric

Post-stroke depression and anxiety, collectively known as post-stroke adverse mental outcome (PSAMO) are common sequelae of stroke. About 30% of stroke survivors develop depression and about 20% develop anxiety. Stroke survivors with PSAMO have poorer health outcomes with higher mortality and greater functional disability. In this study, we aimed to develop a machine learning (ML) model to predict the risk of PSAMO. We retrospectively studied 1780 patients with stroke who were divided into PSAMO vs. no PSAMO groups based on results of validated depression and anxiety questionnaires. The features collected included demographic and sociological data, quality of life scores, stroke-related information, medical and medication history, and comorbidities. Recursive feature elimination was used to select features to input in parallel to eight ML algorithms to train and test the model. Bayesian optimization was used for hyperparameter tuning. Shapley additive explanations (SHAP), an explainable AI (XAI) method, was applied to interpret the model. The best performing ML algorithm was gradient-boosted tree, which attained 74.7% binary classification accuracy. Feature importance calculated by SHAP produced a list of ranked important features that contributed to the prediction, which were consistent with findings of prior clinical studies. Some of these factors were modifiable, and potentially amenable to intervention at early stages of stroke to reduce the incidence of PSAMO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538068PMC
http://dx.doi.org/10.3390/s23187946DOI Listing

Publication Analysis

Top Keywords

post-stroke adverse
8
adverse mental
8
machine learning
8
1780 patients
8
depression anxiety
8
stroke survivors
8
psamo
6
stroke
5
explainable risk
4
risk prediction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!