Background: Elevated nocturnal blood pressure (BP) is a risk factor for cardiovascular disease (CVD) and mortality. Cuffless BP assessment aided by machine learning could be a desirable alternative to traditional cuff-based methods for monitoring BP during sleep. We describe a machine-learning-based algorithm for predicting nocturnal BP using single-channel fingertip plethysmography (PPG) in healthy adults.
Methods: Sixty-eight healthy adults with no apparent sleep or CVD (53% male), with a median (IQR) age of 29 (23-46 years), underwent overnight polysomnography (PSG) with fingertip PPG and ambulatory blood pressure monitoring (ABPM). Features based on pulse morphology were extracted from the PPG waveforms. Random forest models were used to predict night-time systolic blood pressure (SBP) and diastolic blood pressure (DBP).
Results: Our model achieved the highest out-of-sample performance with a window length of 7 s across window lengths explored (60 s, 30 s, 15 s, 7 s, and 3 s). The mean absolute error (MAE ± STD) was 5.72 ± 4.51 mmHg for SBP and 4.52 ± 3.60 mmHg for DBP. Similarly, the root mean square error (RMSE ± STD) was 6.47 ± 1.88 mmHg for SBP and 4.62 ± 1.17 mmHg for DBP. The mean correlation coefficient between measured and predicted values was 0.87 for SBP and 0.86 for DBP. Based on Shapley additive explanation (SHAP) values, the most important PPG waveform feature was the stiffness index, a marker that reflects the change in arterial stiffness.
Conclusion: Our results highlight the potential of machine learning-based nocturnal BP prediction using single-channel fingertip PPG in healthy adults. The accuracy of the predictions demonstrated that our cuffless method was able to capture the dynamic and complex relationship between PPG waveform characteristics and BP during sleep, which may provide a scalable, convenient, economical, and non-invasive means to continuously monitor blood pressure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537552 | PMC |
http://dx.doi.org/10.3390/s23187931 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!