Toddlers face serious health hazards if they fall from relatively high places at home during everyday activities and are not swiftly rescued. Still, few effective, precise, and exhaustive solutions exist for such a task. This research aims to create a real-time assessment system for head injury from falls. Two phases are involved in processing the framework: In phase I, the data of joints is obtained by processing surveillance video with Open Pose. The long short-term memory (LSTM) network and 3D transform model are then used to integrate key spots' frame space and time information. In phase II, the head acceleration is derived and inserted into the HIC value calculation, and a classification model is developed to assess the injury. We collected 200 RGB-captured daily films of 13- to 30-month-old toddlers playing near furniture edges, guardrails, and upside-down falls. Five hundred video clips extracted from these are divided in an 8:2 ratio into a training and validation set. We prepared an additional collection of 300 video clips (test set) of toddlers' daily falling at home from their parents to evaluate the framework's performance. The experimental findings revealed a classification accuracy of 96.67%. The feasibility of a real-time AI technique for assessing head injuries in falls through monitoring was proven.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534444 | PMC |
http://dx.doi.org/10.3390/s23187896 | DOI Listing |
Sci Total Environ
January 2025
Center for Environmental Radioactivity (CERAD) CoE, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway; Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), P.O.Box 5003, NO-1432 Ås, Norway.
Numerical transport models are important tools for nuclear emergency decision makers in that they rapidly provide early predictions of dispersion of released radionuclides, which is key information to determine adequate emergency protective measures. They can also help us understand and describe environmental processes and can give a comprehensive assessment of transport and transfer of radionuclides in the environment. Transport of radionuclides in air and ocean is affected by a number of different physico-chemical processes.
View Article and Find Full Text PDFSci Total Environ
January 2025
CATIE, Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica.
Agricultural systems are both emitters of greenhouse gases and have the potential to sequester carbon, especially agroforestry systems. Coffee agroforestry systems offer a wide range of intensities of use of agricultural inputs and densities and management of shade trees. We assessed the agronomic carbon footprint (up to farm gate) and modelled the carbon sequestration of a range of coffee agroforestry systems across 180 farms in Costa Rica and Guatemala.
View Article and Find Full Text PDFLung Cancer
January 2025
Internal Medicine III, Wakayama Medical University, Wakayama, Japan.
Objectives: The lack of definitive biomarkers presents a significant challenge for chemo-immunotherapy in extensive-stage small-cell lung cancer (ES-SCLC). We aimed to identify key genes associated with chemo-immunotherapy efficacy in ES-SCLC through comprehensive gene expression analysis using machine learning (ML).
Methods: A prospective multicenter cohort of patients with ES-SCLC who received first-line chemo-immunotherapy was analyzed.
J Med Internet Res
January 2025
Department of Pediatrics, Medical School, University of Michigan, Ann Arbor, MI, United States.
Background: The mental health crisis among college students intensified amid the COVID-19 pandemic, suggesting an urgent need for innovative solutions to support them. Previous efforts to address mental health concerns have been constrained, often due to the underuse or shortage of services. Mobile health (mHealth) technology holds significant potential for providing resilience-building support and enhancing access to mental health care.
View Article and Find Full Text PDFCogn Neuropsychol
January 2025
Department of Psychological Sciences, Rice University, Houston, Texas, USA.
Many aspects of human performance require producing sequences of items in serial order. The current study takes a multiple-case approach to investigate whether the system responsible for serial order is shared across cognitive domains, focusing on working memory (WM) and word production. Serial order performance in three individuals with post-stroke language and verbal WM disorders (hereafter persons with aphasia, PWAs) were assessed using recognition and recall tasks for verbal and visuospatial WM, as well as error analyses in spoken and written production tasks to assess whether there was a tendency to produce the correct phonemes/letters in the wrong order.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!