Saliency-Driven Hand Gesture Recognition Incorporating Histogram of Oriented Gradients (HOG) and Deep Learning.

Sensors (Basel)

Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada.

Published: September 2023

Hand gesture recognition is a vital means of communication to convey information between humans and machines. We propose a novel model for hand gesture recognition based on computer vision methods and compare results based on images with complex scenes. While extracting skin color information is an efficient method to determine hand regions, complicated image backgrounds adversely affect recognizing the exact area of the hand shape. Some valuable features like saliency maps, histogram of oriented gradients (HOG), Canny edge detection, and skin color help us maximize the accuracy of hand shape recognition. Considering these features, we proposed an efficient hand posture detection model that improves the test accuracy results to over 99% on the NUS Hand Posture Dataset II and more than 97% on the hand gesture dataset with different challenging backgrounds. In addition, we added noise to around 60% of our datasets. Replicating our experiment, we achieved more than 98% and nearly 97% accuracy on NUS and hand gesture datasets, respectively. Experiments illustrate that the saliency method with HOG has stable performance for a wide range of images with complex backgrounds having varied hand colors and sizes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535493PMC
http://dx.doi.org/10.3390/s23187790DOI Listing

Publication Analysis

Top Keywords

hand gesture
20
gesture recognition
12
hand
10
histogram oriented
8
oriented gradients
8
gradients hog
8
images complex
8
skin color
8
hand shape
8
hand posture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!