The evolution of respiratory diseases represents a considerable public health challenge, as they are among the leading causes of death worldwide. In this sense, in addition to the high prevalence of diseases such as asthma, chronic obstructive pulmonary disease, pneumonia, cystic fibrosis, and lung cancer, emerging respiratory diseases, particularly those caused by members of the coronavirus family, have contributed to a significant number of deaths on a global scale over the last two decades. Therefore, several studies have been conducted to optimize the efficacy of treatments against these diseases, focusing on pulmonary drug delivery using nanomedicine. Thus, the development of nanocarriers has emerged as a promising alternative to overcome the limitations of conventional therapy, by increasing drug bioavailability at the target site and reducing unwanted side effects. In this context, nanoparticles composed of chitosan (CS) show advantages over other nanocarriers because chitosan possesses intrinsic biological properties, such as anti-inflammatory, antimicrobial, and mucoadhesive capacity. Moreover, CS nanoparticles have the potential to enhance drug stability, prolong the duration of action, improve drug targeting, control drug release, optimize dissolution of poorly soluble drugs, and increase cell membrane permeability of hydrophobic drugs. These properties could optimize the performance of the drug after its pulmonary administration. Therefore, this review aims to discuss the potential of chitosan nanoparticles for pulmonary drug delivery, highlighting how their biological properties can improve the treatment of pulmonary diseases, including their synergistic action with the encapsulated drug.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536410 | PMC |
http://dx.doi.org/10.3390/polym15183849 | DOI Listing |
Lung
January 2025
Mother and Child Department, Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
Purpose: The study evaluated the effects of elexacaftor/tezacaftor/ivacaftor (ETI) therapy in people with cystic fibrosis (pwCF) and a clinical history of Aspergillus fumigatus (AF) infection.
Methods: This prospective cohort study included pwCF who initiated ETI therapy and had received antifungal treatment in the preceding five years due to allergic bronchopulmonary aspergillosis (ABPA group) or other AF-related clinical manifestations (AF group). A control group of pwCF with no prior respiratory cultures positive for AF was also included.
Sci Rep
January 2025
1Nantong University, Nantong, 226007, People's Republic of China.
Estrogen sulfotransferase (SULT1E1), a member of the sulfotransferase family (SULTs), is the enzyme with the strongest affinity for estrogen. Despite significant associations between SULT1E1 and the progression and prognosis of a range of diseases, its functional role and potential mechanisms in lung adenocarcinoma (LUAD) remain unclear. The objective of this study was to examine the potential of SULT1E1 as a biomarker for LUAD.
View Article and Find Full Text PDFNat Commun
January 2025
Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontier Science Center of the Materials Biology and Dynamic Chemistry, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China.
Reactive oxygen species (ROS) is promising in cancer therapy by accelerating tumor cell death, whose therapeutic efficacy, however, is greatly limited by the hypoxia in the tumor microenvironment (TME) and the antioxidant defense. Amplification of oxidative stress has been successfully employed for tumor therapy, but the interactions between cancer cells and the other factors of TME usually lead to inadequate tumor treatments. To tackle this issue, we develop a pH/redox dual-responsive nanomedicine based on the remodeling of cancer-associated fibroblasts (CAFs) for multi-pronged amplification of ROS (ZnPP@FQOS).
View Article and Find Full Text PDFCell Death Dis
January 2025
State Key Laboratory of Respiratory Diseases, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510120, China.
Immune checkpoint inhibitors (ICIs) have significant therapeutic effects but can also cause fatal lung injury. However, the lack of mouse animal models of ICI-related lung injury (ICI-LI) has limited the in-depth exploration of its pathogenesis. In clinical practice, underlying lung diseases increase the risk of lung injury.
View Article and Find Full Text PDFRMD Open
January 2025
Service de Rhumatologie, Hôpital Cochin, APHP-Centre Université Paris Cité, Paris, France
Objective: To examine the course of interstitial lung disease associated with rheumatoid arthritis (RA-ILD) in France on treatment with Janus kinase inhibitors (JAKis) using the MAJIK-SFR registry.
Methods: Prospective national multicentre observational study identifying patients with RA-ILD from the MAJIK-SFR registry. Pulmonary assessment data were collected at JAKi initiation and follow-up visits (6 months, 12 months and a median of 21 months postinclusion), including chest high-resolution CT (HRCT), pulmonary function tests (forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO)), acute exacerbations of ILD, respiratory infections and lung cancers.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!