Tannic acid (TA) can be used as an additive to improve the properties of hydrogels, but it acts as a radical scavenger, which hinders radical polymerization. In this study, we successfully and easily synthesized a TA-incorporated 2-acrylamido-2-methylpropanesulfonic acid (AMPS) hydrogel using an electron beam (E-beam) in a one-pot process at room temperature. TA successfully grafted onto AMPS polymer chains under E-beam irradiation, but higher TA content reduced grafting efficiency and prevented hydrogel formation. Peel strength of the AMPS hydrogel increased proportionally with TA, but cohesive failure and substrate residue occurred above 1.25 phm (parts per 100 g of AMPS) TA. Tensile strength peaked at 0.25 phm TA but decreased below the control value at 1.25 phm. Tensile elongation exceeded 2000% with TA addition. Peel strength varied significantly with substrate type. The wood substrate had the highest peel strength value of 150 N/m, while pork skin had a low value of 11.5 N/m. However, the addition of TA increased the peel strength by over 300%. The ionic conductivity of the AMPS/TA hydrogel increased from 0.9 S/m to 1.52 S/m with TA content, while the swelling ratio decreased by 50% upon TA addition and increased slightly thereafter.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538098PMC
http://dx.doi.org/10.3390/polym15183836DOI Listing

Publication Analysis

Top Keywords

peel strength
16
electron beam
8
amps hydrogel
8
hydrogel increased
8
125 phm
8
addition increased
8
strength
5
facile synthesis
4
synthesis self-adhesion
4
self-adhesion ion-conducting
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!