Maize yield forecasting is important for the organisation of harvesting and storage, for the estimation of the commodity base and for the provision of the country's feed and food demand (export-import). To this end, a field experiment was conducted in dry (2021) and extreme dry (2022) years to track the development of the crop to determine the evolution of the relative chlorophyll content (SPAD) and leaf area index (LAI) for better yield estimation. The obtained results showed that SPAD and LAI decreased significantly under drought stress, and leaf senescence had already started in the early vegetative stage. The amount of top dressing applied at V6 and V12 phenophases did not increase yield due to the low amount of rainfall. The 120 kg N ha base fertiliser proved to be optimal. The suitability of SPAD and LAI for maize yield estimation was modelled by regression analysis. Results showed that the combined SPAD-LAI was suitable for yield prediction, and the correlation was strongest at the VT stage (R = 0.762).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535841 | PMC |
http://dx.doi.org/10.3390/plants12183301 | DOI Listing |
BMC Plant Biol
January 2025
Agricultural College, Faculty of Agricultural College, Inner Mongolia Agricultural University, Hohhot, 010019, China.
Background: Drought stress is a major environmental constraint affecting crop yields. Plants in agricultural and natural environments have developed various mechanisms to cope with drought stress. Identifying genes associated with drought stress tolerance in potato and elucidating their regulatory mechanisms is crucial for the breeding of new potato germplasms.
View Article and Find Full Text PDFPLoS One
January 2025
Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée (ISFORT), Université du Québec en Outaouais (UQO), Ripon, Canada.
Forests face an escalating threat from the increasing frequency of extreme drought events driven by climate change. To address this challenge, it is crucial to understand how widely distributed species of economic or ecological importance may respond to drought stress. In this study, we examined the transcriptome of white spruce (Picea glauca (Moench) Voss) to identify key genes and metabolic pathways involved in the species' response to water stress.
View Article and Find Full Text PDFFront Genet
December 2024
School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, China.
Acylation represents a pivotal biochemical process that is instrumental in the modification of secondary metabolites throughout the growth and developmental stages of plants. The BAHD acyltransferase family within the plant kingdom predominantly utilizes coenzyme A thioester as the acyl donor, while employing alcohol or amine compounds as the acceptor substrates to facilitate acylation reactions. Using bioinformatics approaches, the gene family members in the genome of () were identified and characterized including gene structure, conserved motifs, -acting elements, and potential gene functions.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
The impact of combined heat and drought stress was investigated in and compared to individual stresses to reveal additive effects and interactions. A combination of plant metabolomics and root and rhizosphere bacterial metabarcoding were used to unravel effects at the plant holobiont level. Hierarchical cluster analysis of metabolomics signatures pointed out two main clusters, one including heat and combined heat and drought, and the second cluster that included the control and drought treatments.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
Drought stress significantly impacts wheat productivity, but plant growth regulators may help mitigate these effects. This study examined the influence of gibberellic acid (GA3) and abscisic acid (ABA) on wheat (Triticum aestivum L., CV: Giza 171) growth and yield under different water regimes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!