A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Increased Plasticity in Invasive Populations of a Globally Invasive Cactus. | LitMetric

Biological invasions pose global threats to biodiversity and ecosystem functions. Invasive species often display a high degree of phenotypic plasticity, enabling them to adapt to new environments. This study examines plasticity to water stress in native and invasive populations, a prevalent invader in arid and semi-arid ecosystems. Through controlled greenhouse experiments, we evaluated three native and nine invasive populations. While all plants survived the dry treatment, natives exhibited lower plasticity to high water availability with only a 36% aboveground biomass increase compared to the invasives with a greater increase of 94%. In terms of belowground biomass, there was no significant response to increased water availability for native populations, but plants from the invasive populations showed a 75% increase from the dry to the wet treatment. Enhanced phenotypic plasticity observed in invasive populations of is likely a significant driver of their success and invasiveness across different regions, particularly with a clear environmental preference towards less arid conditions. Climate change is expected to amplify the invasion success due to the expansion of arid areas and desertification. adapts to diverse environments, survives dry spells, and grows rapidly in times of high-water supply, making it a candidate for increased invasion potential with climate change.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536680PMC
http://dx.doi.org/10.3390/plants12183287DOI Listing

Publication Analysis

Top Keywords

invasive populations
20
phenotypic plasticity
8
native invasive
8
populations plants
8
water availability
8
climate change
8
invasive
7
populations
6
increased plasticity
4
plasticity invasive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!