Optimization of the Use of Industrial Wastes in Anaerobic Soil Disinfestation for the Control of Fusarium Wilt in Strawberry.

Plants (Basel)

Departamento de Agronomía E.T.S.I.A., Universidad de Sevilla, Ctra. Utrera Km 1, 41013 Seville, Spain.

Published: September 2023

Anaerobic soil disinfestation (ASD) is proposed as an alternative to the use of chemical fumigants against Fusarium wilt in strawberry crops. Different residual wastes (rice bran, fishmeal, and residual strawberry extrudate) were assessed as amendments for ASD. Two different concentrations and two incubation durations were tested in growth chamber trials. The abundance of several microbial groups was noted before and after the treatments. Strawberry plants were grown in the treated soils to record Fusarium wilt disease severity. The population density of increased after ASD in most amendments with rice bran and residual strawberry extrudate. Changes in spp., copiotrophic bacteria, and spp. populations were observed after anaerobiosis treatments and plant trials. A reduction in the disease severity was achieved in ASD-treated soils with 20 t/ha of rice bran at both 25 and 60 days of incubation, but not when using a 13.5 t/ha dose. Similarly, treatments using 19.3 t/ha of fishmeal for both incubation durations were able to reduce disease severity. In contrast, a severity reduction was only obtained in soils treated with 25.02 t/ha of the residual strawberry extrudate and incubated for 60 days in anaerobic conditions. Two of the three by-products tested were able to reduce Fusarium wilt symptoms in strawberry plants after an ASD-treatment period of only 25 days. Accordingly, the technique seems promising for strawberry growers in Huelva, Spain, and highly sustainable by giving value to residues produced in surrounding areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534816PMC
http://dx.doi.org/10.3390/plants12183185DOI Listing

Publication Analysis

Top Keywords

fusarium wilt
16
rice bran
12
residual strawberry
12
strawberry extrudate
12
disease severity
12
anaerobic soil
8
soil disinfestation
8
strawberry
8
wilt strawberry
8
incubation durations
8

Similar Publications

Nutritional status being the first line of defense for host plants, determines their susceptibility or resistance against invading pathogens. In recent years, the applications of plant nutrient related products have been documented as one of the best performers and considered as alternatives or/and supplements in plant disease management compared to traditional chemicals. However, knowledge about application of plant nutrient related products for the management of destructive fungal pathogen Fusarium oxysporum f.

View Article and Find Full Text PDF

Comparative genomic analysis of Fusarium oxysporum f. sp. lycopersici reveals telomeric duplications of a lineage-specific region carrying SIX8 and PSL1 and genome-wide expansion of Foxy transposable elements.

Int J Biol Macromol

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China; Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, College of Horticulture, Hebei Agricultural University, Baoding 071000, China; Division of Plant Sciences, Research School of Biology, Australian National University, Canberra, ACT 2601, Australia. Electronic address:

Fusarium oxysporum f. sp. lycopersici (Fol), the causal agent of tomato wilt disease, is a soil-borne, vascular-colonizing fungal pathogen that severely impacts tomato production in most growing regions worldwide.

View Article and Find Full Text PDF

Background: Fungal diseases of plants have a serious impact on the quality and yield of crops, and some traditional pesticides can no longer cope with this problem. Therefore, it is of great significance to develop new pesticides with high efficiency and low toxicity.

Results: A series of flavonoid derivatives containing benzothiazole were designed and synthesized.

View Article and Find Full Text PDF

Marker-assisted selection in segregating populations of tomatoes for resistance to TYLCV, ToMV, and Fusarium wilt.

Mol Biol Rep

January 2025

Department of Agronomy and Plant Breeding Sciences, Agricultural College of Aburaihan, University of Tehran, Pakdasht, Iran.

Background: Tomato yellow leaf curl virus (TYLCV), tomato mosaic virus (ToMV), and Fusarium wilt are three of tomatoes' most important viral and fungal diseases.

Methods And Results: In this study, the application of molecular markers associated with tomato yellow leaf curl virus resistance gene (Ty1), tomato mosaic virus resistance gene (Tm2), and Fusarium wilt resistance gene (I-1) (linked marker) were evaluated. In order to optimize and use SNP markers (by HRM diagnostic method) and SCAR markers, segregating populations of tomatoes were produced by self-pollination of commercial hybrid cultivars.

View Article and Find Full Text PDF

Correction to: Genome‑wide analysis of autophagy‑related genes (ATGs) in banana highlights MaATG8s in cell death and autophagy in immune response to Fusarium wilt.

Plant Cell Rep

January 2025

Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources and College of Biology, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!