AI Article Synopsis

Article Abstract

In recent years, there has been a significant increase in the registration of drugs for nasal application with systemic effects. Previous preclinical in vitro test systems for transmucosal drug absorption studies have mostly been based on primary cells or on tumor cell lines such as RPMI 2650, but both approaches have disadvantages. Therefore, the aim of this study was to establish and characterize a novel immortalized nasal epithelial cell line as the basis for an improved 3D cell culture model of the nasal mucosa. First, porcine primary cells were isolated and transfected. The P1 cell line obtained from this process was characterized in terms of its expression of tissue-specific properties, namely, mucus expression, cilia formation, and epithelial barrier formation. Using air-liquid interface cultivation, it was possible to achieve both high mucus formation and the development of functional cilia. Epithelial integrity was expressed as both transepithelial electrical resistance and mucosal permeability, which was determined for sodium fluorescein, rhodamine B, and FITC-dextran 4000. We noted a high comparability of the novel cell culture model with native excised nasal mucosa in terms of these measures. Thus, this novel cell line seems to offer a promising approach for developing 3D nasal mucosa tissues that exhibit favorable characteristics to be used as an in vitro system for testing drug delivery systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536430PMC
http://dx.doi.org/10.3390/pharmaceutics15092245DOI Listing

Publication Analysis

Top Keywords

nasal mucosa
16
novel cell
12
drug delivery
8
primary cells
8
cell culture
8
culture model
8
nasal
7
cell
7
path nasal
4
nasal tissue
4

Similar Publications

Background: At present, the treatment for allergic rhinitis (AR) is only limited to symptom relief, and AR is not able be cured. It is important to find new therapeutic regimens for AR.

Objective: To explore the effect of adipose mesenchymal stem cell-derived exosomes (AMSC-exos) on AR in mice.

View Article and Find Full Text PDF

Rationale: Smoking has been shown to be associated with circulating deficiencies in 25(OH)D3 and reduced sinonasal tissue levels of the active form of vitamin D, 1,25(OH)2D3. Given vitamin D's ability to reduce inflammation, we sought to examine if intranasal (IN) delivery of calcitriol [clinical analog of 1,25(OH)2D3] could reduce inflammation and improve disease severity in a murine model of chronic cigarette smoke-induced sinonasal inflammation (CS-SI).

Methods: Mice were exposed to CS 5 h/day, 5 days/week for 9 months, and then began IN calcitriol three times per week for 4 weeks.

View Article and Find Full Text PDF

Actinomycosis is an endogenous bacterial infection caused by . This bacterium reside on the mucosa of oral cavity, tonsils, and genitourinary tract. Any insult such as trauma, surgery, or foreign body disrupts the mucosal barrier and gives entry to the underlying tissue to cause disease.

View Article and Find Full Text PDF

Baicalein attenuates ovalbumin-induced allergic rhinitis through the activation of nuclear receptor subfamily 4 group a member 1.

Immunol Res

January 2025

Department of Otolaryngology, Qingdao Traditional Chinese Medicine Hospital (Qingdao Hiser Hospital), Qingdao Hiser Hospital Affiliated of Qingdao University, Qingdao, 266033, Shandong, People's Republic of China.

Baicalein, one of the major active flavonoids found in Scutellaria baicalensis, has been revealed to exhibit potent anti-inflammatory properties in allergic airway inflammation. This study aimed to explore the role of baicalein and its relevant mechanism in the treatment of allergic rhinitis (AR). The bioinformatics tools were used to predict the targets of baicalein and AR-related genes.

View Article and Find Full Text PDF

Primary ciliary dyskinesia (PCD, OMIM 244400) is a rare genetic disorder that affects motile cilia and is characterised by impaired mucociliary clearance of the airway epithelium, which results in chronic upper and lower airway infections. While short-read next-generation sequencing technology has been used for the genetic testing of PCD, its effectiveness is limited in identifying variants in the gene because of the nearly identical pseudogene As we confirmed that the gene was not expressed in airway cells, we obtained nasal mucosa biopsy specimens for total RNA sequencing (RNA-seq) with library enrichment using exome oligos. Among the 34 nasal samples from patients suspected of having PCD, three aberrant splicing patterns in were identified in two samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!